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Abstract

We construct large families of groups admitting free transitive actions on median
spaces. In particular, we construct groups which act freely and transitively on the complete
universal real tree with continuum valence such that any subgroup of the additive reals is
realised as the stabiliser of an axis. We prove a more precise version of this, which implies
that there are 22" pairwise non-isomorphic groups which admit a free transitive action
on this real tree. We also construct free transitive actions on products of complete real
trees such that any subgroup of R" is realised as the stabiliser of a maximal flat, and an
irreducible action on the product of two complete real trees.

To construct each of these groups, we introduce the notion of an ore: a set equipped
with the structure of a meet semilattice and a cancellative monoid with involution, which
verifies some additional axioms. We show that one can extract a group from an ore and
equip this group with a left-invariant median structure.
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1 Introduction

Median spaces are metric spaces which simultaneously generalise both R-trees and CAT(0)
cube complexes. We will give a number of constructions of free transitive actions on connected
median spaces, revealing a great deal of variety among the groups which admit these actions.
The study of groups acting freely and transitively on connected metric spaces is in part
inspired by the highly fruitful idea that finitely generated groups can be studied via their
actions on metric spaces, the most revealing of actions being free (or proper) and transitive
(or cocompact). One of the most natural ways to obtain a transitive action on a median
space is to take a finitely generated group G which is coarsely median (see [Bow13]) with
respect to some (equivalently any) proper word metric and to consider the action of an
ultraproduct G* of G on an asymptotic cone of G (using the same ultrafilter). This space is
bi-Lipschitz equivalent to a median space on which G* acts by isometries [Bow18, Zeil6]. It is
straightforward to see that such an action is always transitive, however it is never free. On the
other hand, Casals-Ruiz, Hagen and Kazachkov have shown that many of these asymptotic
cones can be equipped with free transitive actions [CRHK24]; their construction involves a
precise understanding of the combinatorial structure of the space in question, independently
of the fact it arises as an asymptotic cone. In the present paper, we will mostly restrict
ourselves to actions on real trees and their products, but, even in this more restricted setting,
the actions we construct exhibit entirely new behaviours.

R-trees. An R-tree is a geodesic metric space where any pair of points is connected by
exactly one simple path, or equivalently, it is a connected median space of rank 1. Finitely
generated groups which act on R-trees have been extensively studied, and this study has
been extremely consequential, particularly for our understanding of hyperbolic groups (see
e.g. [BF95, MS84, RS94, Sel95, Sel09]). The class of finitely generated groups which admit
free actions on R-trees includes free groups (which act on their Cayley graphs), free abelian
groups (which embed as subgroups of R) and, as was shown by Morgan—Shalen in [MS91], the
fundamental group of any closed surface 3, unless 3 is non-orientable with Euler characteristic
> —1. One can show that any free product of groups which admit free actions on R-trees
admits a free action on an R-tree. Conversely, Rips’ theorem [GLP94] states that any finitely
generated group which admits a free action on an R-tree splits as a free product of surface
and free abelian groups. Dunwoody [Dun97] and Zastrow [Zas98] produced examples which
show that this characterisation fails when one drops the finite generation assumption.

More recently, Berestovkii-Plaut [BP10] produced a large family of groups which act freely
on real trees: they show that every length space X is the quotient of a real tree Tx by the free
action of some group Gx, where the group Gx can be interpreted as a “refined fundamental
group” of X. Every finitely generated subgroup of Gx is free, but they produce examples
of spaces X where Gx does not split as a free product of free and surface groups. Their



construction can also be used to construct a free transitive action on the tree Ty, provided
the space X is itself equipped with a free transitive action (see the proof of Theorem 38.24
on page 211 of [CRHK24]).

Recall that, for any cardinal x which is not both finite and odd, there is exactly one group
which acts freely, transitively and without edge inversions on the regular simplicial tree with
valence k: namely the free group of rank /2. Given an R-tree T and a point x € T', the set
of directions of T at x is the set of connected components of T'— {z}. The valence of T" at
x is the cardinality of the set of directions at x. Given a cardinal x > 2, there is a unique
complete R-tree up to isometry such that each point has valence k [MNO92, Nik89], called
the universal real tree with valence k. Unlike in the discrete case, this tree does not always
admit a unique group structure. This was proven by Casals-Ruiz, Hagen and Kazachkov in
[CRHK24, Section 38], where they construct, for each 2 < x < 2%, a group G which acts
freely and transitively on the universal real tree T with valence 280 such that there are exactly
k conjugacy classes of maximal abelian subgroups H < G such that H =~ R. More precisely,
there are exactly x G-orbits of lines L € T such that the stabiliser Stabg(L) acts transitively
on L. They also show that any line in T either has transitive, cyclic or trivial stabiliser
(see Proposition 38.28 in loc. sit.). This leads to the natural question of whether any other
subgroups of R can be realised as the stabiliser of a line in a free transitive action on a real
tree. Our first result provides a positive answer to this question.

Let Subyc(R) denote the set of non-cyclic subgroups of R and let I denote the set of
cardinals s such that x < 280,

Theorem A (Theorem 4.1). Let v : Subyc(R) — K be any map which is supported on < 2%0
elements of Subyc(R). Then there exists a group G and a free transitive action of G on the
unaversal real tree T with valence 280 such that the following holds. For each H < R, let Ay
be the set of orbits G- L such that L = T is a line and the induced action of Stabg(L) on L is
isomorphic to the action of H on R by translations. If H < R is non-cyclic then |Ag| = «(H).

An easy consequence of this is that the set of groups which admit free transitive actions
on T is not only infinite, it is as large as possible. Recall that T is the asymptotic cone of
any non-elementary hyperbolic group [DP01] and, since these are countable, it follows that
the cardinality of T is 2%0. Thus there are at most 92"0 possible group operations on 7.

Corollary B. Let T be the universal real tree with valence 2%°. Then there are 92" pairwise
non-isomorphic groups which admit a free transitive action on T .

Proof. Let A be a set of pairwise non-isomorphic elements of Subyc(R) with cardinality!
|A| = 22" and for each H € A let xg : Subyc(R) — K be the characteristic map of H.
Let G be a group satisfying the conclusion of Theorem A with ¢ = xg. Recall that every
maximal abelian subgroup of G is the stabiliser of a line in T'. Therefore, for each H, K € A
with H %2 K, we have Gy % Gk since Gy has a maximal abelian subgroup isomorphic to
H and Gk does not. Conversely, if G is a group acting freely and transitively on T then
|G| = |T'| = 2% and there are at most 22° groups with that cardinality. O

The construction of the group G in Theorem A is inspired by the constructions of universal
real trees as function spaces given by Dyubina—Polterovich in [DP01]. In the case of infinite

!One way of constructing such a family of groups is given by Yves Cornulier here: https://mathoverflow.
net/questions/264438/number-of-torsion-free-abelian-groups.
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cardinals, their construction can be described as follows. Fix an infinite cardinal p and a set
C,, of cardinality . The universal real tree A, is given as the set of maps f : [0,£7) — C,
where £y > 0 and f is piecewise constant from the right, meaning that for all ¢ € [0, /)
there exists ¢ > 0 such that f|j;;) is constant. If £; = 0 then f is the empty map.
Given f,g € A,, the distance from f to g is defined by d(f,g) = (¢ —s) + ({g — s), where
s :=sup{t € [0,min{ly,£y}) : flo4] = 9ljo,s}- The fact that the elements of A, are piecewise
constant from the right ensures that the set of directions at any point of A, is in bijection
with C),.

The underlying idea for the construction of the group G is to construct a function space
T as above but where the set of “directions” is equipped with an involution and an action of
R which are used to define a group operation on the space, in such a way that the choice of
R-action determines the possible axis stabilisers of T'. The elements of A, in the Dyubina—
Polterovich construction are not well suited to this, as the piecewise constant from the right
condition, and the fact that the domains are half open intervals, make it difficult to define
appropriate inverses of elements.

Instead, the group G will be a subgroup of a group Tx whose construction we now briefly
outline. We start with a set X equipped with an action of Isom(R) = R x {x), where
(#) =~ 7Z/27Z. Two maps f,g : [0,{] — X are said to be equivalent if they agree on all
but countably many elements in [0, ¢]. The elements of Tx are equivalence classes of maps
f:[0,€¢] — X satisfying an admissibility criterion. We will define a group operation * on
T, where the product § x g of two elements f,g € Tx depends on £;. The metric on Ty
can be defined similarly to the metric on A, to make T’x into an R-tree. Given z € X such
that x* ¢ R - x, there is a line in T'x given by L, = {f € Tx : f(t) = x Vt or f(t) = ™ Vt}
which has stabiliser isomorphic to Stabg(z). Because we allow so many maps in Tx, the set
of directions at each point of T is much bigger than X itself; it turns out that the valence
of Tx is > 22" as long as | X| > 2. Moreover, it may not be possible to control the exact
set of orbits of axes in T'x with non-cyclic stabilisers (see Remark 4.17). The right object to
consider is instead the smallest subgroup G < T'x which is closed with respect to the topology
induced by the metric on Tx, and which contains all the axes L,. The construction of Tx
is given in Section 4.1 using tools developed in Section 3 (we will address these later in this
introduction). We will prove in Section 4.3 that G is indeed the universal complete real tree
with valence 280 as long as 2 < | X| < 2% and, in Section 4.4, we will prove Theorem A using
this construction.

We can also use the above ideas to construct groups which act freely and transitively on
real trees with valence 3 < k < 2% but these only exist for incomplete real trees:

Theorem C (Theorem 4.2). Let 3 < k < 2% be a cardinal. There are no free transitive
actions on the complete universal R-tree T,, with valence k.

Let k = 3 be any cardinal. There exists a free transitive action G —~ S, where G is a
group and Sy is an incomplete R-tree with valence k, if an only if k is either infinite or even.
If k is finite and even, then this action is unique.

In [CM12], Chiswell-Miiller show that the free product of x copies of R acts freely and
transitively on an R-tree. Although it is not explicitly mentioned, it is not hard to see from
their proof that this real tree is incomplete and has valence 2x. In fact, the action we construct
is isometric to theirs (see Remark 4.35). If one applies their construction to the free product



of 2% copies of R, one obtains the free transitive action on Uryson’s R-tree constructed by
Berestovskii [Ber89, Ber19].

Another interesting source of free transitive actions on incomplete R-trees is the following
result of Chiswell-Miiller [CM10, Theorem 5.4]: Any free action on an R-tree is contained
i a free transitive action on an R-tree. More preciselyl\ given a free action G —~ T, where
T is an R-tree, there exists a group G and an R-tree T, such that G < G and there is a
G-equivariant isometric embedding T" — T'. If one starts with an action G — T which is not
already transitive then the tree 7' will not be complete (see Proposition 6.2 in loc. sit.).

In Section 5, we construct free transitive actions on A-trees for any totally ordered abelian
group A (see Definition 2.8). The study of group actions on A-trees was initiated by Morgan—
Shalen in [MS84]. Due to the relationship between free actions on A-trees and algorithmic
properties of groups, there has been significant interest in producing such actions. Free
actions of Lyndon’s free Z[t]-group FZI (and other groups of infinite words over discretely
ordered groups) were constructed in [MRS05]. In [KMS14], the authors give a natural folding
construction associating free actions on trees to groups of infinite words, and establish a
universal embedding property for the resulting trees.

Actions on products of trees. Let 17,75 be regular, locally finite simplicial trees with
even degrees di,ds = 4. Unlike the case with a single factor, there are several groups which
act freely, transitively and without edge inversions on the vertex set of the product 77 x
T>. The groups which admit these actions — called BMW groups, after Burger, Moses and
Wise — can have extremely varied structures, ranging from direct products of free groups
to virtually simple groups. Indeed, a great deal of the interest in these groups stems from
the discoveries by the aforementioned authors of classes of examples answering longstanding
questions in geometric group theory. Wise used them to construct the first example of a group
acting properly discontinuously and cocompactly on a CAT(0) space which is not residually
finite [Wis96] (see also [Wis07]) and Burger—-Moses used them to construct finitely presented
simple groups of the form F,, «g F,,, where F,, Fy,,, E/ are free groups with finite rank and the
embedding of E in both F,, and F), has finite index [BMO00]. A survey on this topic can be
found in [Cap19].

Before one can fathom the existence of a simple group acting freely and cocompactly on a
product of trees, one must first come to terms with the existence of a group which acts freely
and cocompactly on such a space without virtually splitting as a direct product. A BMW
group G is called reducible if it contains a finite index subgroup which splits non-trivially
as a direct product and irreducible otherwise. Examples of irreducible BMW groups include
those constructed by Burger—Moses and Wise, as well as some constructed in [Rad20, Rat04,
Run18, SV17].

Using the construction from Section 6.1, we can show that this phenomenon persists in
the continuous setting:

Corollary D (Corollary 6.22). There exists a group G which admits a free transitive action
by isometries on a product Ty x Ty of two complete R-trees with valence 280 such that, for any
subgroup H < G which splits non-trivially as a direct product, the induced action H — Ty x Th
s not cobounded.

Although the group G constructed in the proof or the above corollary does not contain
any subgroups which split as direct products and act coboundedly on 17 x T5, it does have



some rather large proper normal subgroups (see the proof of Corollary 6.22). Therefore the
following question remains mysterious:

Question 1.1. Does there exist a simple group which acts freely and coboundedly on a product
of (complete) R-trees?

By Proposition 6.23, the group constructed to prove Corollary D does not contain any
isometrically embedded irreducible BMW groups. By taking direct unions of certain BMW
groups, we can construct groups which act on products of trees with dense orbits and contain
isometrically embedded irreducible BMW groups. See Section 2.4 for the definition of a
positive BMW presentation. The group from [Wis07, Example 4.1] is an example of an
irreducible BMW group with such a presentation.

Theorem E (Theorem 6.24). Let H be a BMW group with a positive BMW presentation
(AU X | Ry and let Cay(H, A u X) be the corresponding Cayley graph. There exists a group
G such that the following hold:

i. there is an injective homomorphism H — G;
ii. G acts freely with dense orbits on the £ product of two R-trees Ty x Th;

iti. there is an isometric embedding ¢ : Cay(H,A u X) — Ty x Ty which is equivariant
relative to H — G.

If H is irreducible, then for any subgroup L < G which splits non-trivially as a direct product,
the induced action of L on Ty x Ts does not have dense orbits.

This leads to the following question:

Question 1.2. For which BMW groups H, with BMW presentation (A u X|R), does there
exist a group G which acts freely and transitively on a product of complete R-trees 77 x T5
such that H < G and there is an equivariant isometric embedding Cay(H, Au X) — T} x T5?

The construction used to produce the group in Corollary D can in fact be used to con-
struct free transitive actions on products of arbitrarily many real trees. The flexibility of this
construction is illustrated in the theorem below.

Let N € {N} U {{1,...,n} : n € N} and let R := ¢}(N) be equipped with its natural
additive group structure and the ¢! norm. Let Subp(R) denote the set of dense subgroups of
R and let Subp(R) be the quotient of Subp(R) under linear isometries of R. Let T be the
¢* product of |[N| copies of the complete universal real tree T with valence 2%,

Theorem F (Theorem 6.1). Let ¢ : Subp(R) — K be any map which is supported on < 280
elements of Subp(R). Then there exists a group G, which acts freely and transitively on T,
such that: for each [H] € Subp(R), the cardinality of the set of orbits of mazimal flats F < T
such that Stabg(F) —~ F is isomorphic to H ~ R is «([H]).

A strategy for constructing free transitive actions on median spaces. FEach of the
existence results mentioned so far involves a different construction of a group acting freely and
transitively (or with dense orbits) on a median space. But, in every case involving a transitive
action, the proof that what we obtain from the construction really is a group with the required
properties follows a similar strategy. Namely, we first define a set Y which we equip with a



binary operation o, an involution —1 and a relation <, and we distinguish an element id € Y.
We then show that (Y, o) is a cancellative monoid with identity id and involution —1 and
(Y, <) is a partially ordered set with minimal element id which satisfies some extra conditions
making it a median semi-lattice (see Definition 3.4). These statements, together with a few
more technical properties, imply that (Y, <,o,id, —1) is an algebraic object called an ore?
(Definition 3.8). This object admits a canonical subset G < Y of admissible elements on
which we define a new binary operation x. We then apply the following result from Section 3:

Theorem G (Theorem 3.23, Proposition 3.29). Let (Y, <,0,id, —1) be an ore and G 'Y be
the set of admissible elements of Y. Then (G, ) is a group.

If A is a totally ordered abelian group and £ :'Y — A is a length function, define d :
G x G — Abyd(f,g) = L(f~' xg). Then d is a A-metric which is invariant under left
multiplication by G and the resulting A-metric space (G,d) is median.

In the above theorem a length function is defined as a map ¢ : Y — A such that, for all

g€ Y, wehave £(g) = £(g~!) = 0 with equality if and only if g = id, and £(goh) = £(g) +£(h)
for all f,g €Y (Definition 3.28).
Remark 1.3. All of the actions we construct in this paper are on spaces which are not locally
compact. It turns out this is to be expected when looking for interesting free transitive actions
on median spaces. Indeed, Messaci proved in [Mes24] that any finite rank locally compact
connected median space which admits a transitive action is isometric to R” equipped with its
¢! metric, for some n.
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2 Preliminaries

2.1 A-metrics

We will at times need to work with generalised metric spaces, where metrics take values in
some totally ordered abelian group. We record some definitions and facts about these spaces
here; for more details the reader can refer to [Chi01, GKMS15].

Let A be an abelian group, which we denote additively. We say that A is totally ordered
if there is a total order < on A which is A-invariant (i.e. z < y < A+ < A+ y for all
A, x,y € A). Tt follows immediately from the definition that such a group is torsion-free. Fix a
totally ordered abelian group A for the rest of this section. Note that we can define intervals
[A1, A2], (A1, A2), (A1, A2], [A1, A2) in exactly the same way as they are defined in R.

2This is unrelated to the work of @ystein Ore. The name is in reference to naturally occurring ores from
which one extracts metals.
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Definition 2.1. Let X be a set. A A-metric on X is a map d : X x X — A such that, for all
r,Yy,z2€ X,

e d(x,y) = 0, with equality if and only if z = y;
e d(z,y) = d(y,z);
o d(x,y) <d(z,z)+d(zvy).

The pair (X, d) is called a A-metric space.

Example 2.2. e The group A is itself a A-metric space, with A-metric given by d(z,y) =
|r —y| =2 —yif z > y and y — x otherwise, for all z,y € A.

e A metric space in the usual sense is an R-metric space.
e The O-skeleton of a connected graph equipped with the path metric is a Z-metric space.

e If X is a metric space, w is an ultrafilter on N and X%, R¥ are the ultrapowers of X, R
with respect to w, then R* has a natural group structure and order making it a totally
ordered abelian group and X“ is an R¥-metric space.

If A =R, we will usually write metric rather than R-metric.

Definition 2.3. Given two A-metric spaces (X,dx), (Y,dy), an isometric embedding ¢ :
X — Y is a map such that dy (¢(z), p(y)) = dx(x,y) for all z,y € X. If ¢ is surjective then
it is an isometry. Let Isom(X) denote the group of all isometries of X.

A geodesic in X is an isometric embedding [0, \] < X for some A € A with A > 0. The
image of a geodesic is called a segment. A A-metric space is called geodesic if every pair of
points is connected by a geodesic.

2.2 Median spaces

Definition 2.4. A A-metric space (X, d) is median if there exists a unique map m : X3 — X
such that for all x1,x2,x3 € X, if ¢ # j then

d(zi, z5) = d(z;, m(z1, x2, x3)) + d(m(z1, 22, 23), T5).
The element m(x1,x9,x3) € X is called the median of z1,x2, x3.
Median A-metric spaces are examples of median algebras:

Definition 2.5. A median algebra is a set X equipped with a symmetric ternary operation
m : X3 — X such that, for all a,b,c,d € X, we have

e m(a,a,b) = a and
e m(m(a,b,d),c,d) = m(m(a,c,d),b,d).

A subset Y € X is a median subalgebra if m(a,b,c) €Y for all a,b,ceY.



Definition 2.6. Given k € N, a k-cube is a median algebra of the form o, = {0, 1}* where
m(z,y,z) = m € o} such that m agrees with at least two elements of {x,y,z} on each
coordinate.

The rank of a median A-metric space (X,d) is the supremum over all £ € N such that
there is a k-cube o which embeds in X as a median subalgebra.

The following lemma is proven in [Bow24, Lemma 13.1.1] in the case where A = R, but
the same proof applies here.

Lemma 2.7. Let (X, m) be a median algebra and let d : X x X — A be a A-metric such that:
for all a,b,c € X such that m(a,b,c) = ¢, we have d(a,b) = d(a,c) + d(c,b). Then (X,d) is a
median A-metric space.

The notion of a A-tree was first introduced by Morgan—Shalen in [MS84]. In the case
where A = R, it is equivalent to the older notion of an R-tree first defined by Tits [Tit77].

Definition 2.8. A A-tree is a geodesic A-metric space such that

e if two segments intersect at a single point, which is an endpoint of both, then their
union is a segment;

e the intersection of two segments with a common endpoint is itself a segment.

An immediate consequence of this definition is that, if T is a A-tree, then there is a unique
segment connecting any pair of points x1,xe € T. We denote this segment by [z1, z2].

As in the real case, this notion can be characterised in terms of Gromov hyperbolicity.
The notion of Gromov hyperbolicity was extended to A-metric spaces by Chiswell in [Chi01]
as follows.

Let Ag := Q®z A, where A and Q are viewed as Z-modules. The elements of Ag can
be viewed as equivalence classes of the equivalence relation ~ on A x (Z — {0}) given by
(A\,m) ~ (p,n) if and only if m\ = nu. The equivalence class of (A\,m) is denoted by %
We equip Ag with the structure of a totally ordered abelian group with operation given by
% + 8= n’\rj# and order given by % > 0 if and only if mA > 0. The map A — Ag given by
A % is an injective homomorphism. We identify A with its image in Ag.

Let (X, d) be a A-metric space and p,z,y € X. The Gromov product (x,y), € Ag is given
by:

(2, 9)p = 5(d(a,p) + d(y,p) — d(z. ).

Definition 2.9. Let § = 0 be a constant. A A-metric space (X, d) is §-hyperbolic with respect
to pe X if for all z,y, z € X we have

(l’, y)P = min{(xa Z)Pv (ya z)p} — 0.
The space (X, d) is d-hyperbolic if it is -hyperbolic with respect to every p € X.

If (X, d) is 0-hyperbolic with respect to p; € X then it is 20-hyperbolic with respect to any
p2 € X [Chi01, Lemma 1.2.5]. In particular, X is O-hyperbolic if and only if X is O-hyperbolic
with respect to some p e X.



Lemma 2.10 (Chiswell, [Chi01, Lemmas 2.1.6 and 2.4.3]). Let (X,d) be a geodesic A-metric
space. Then X is a A-tree if and only if, for some (equivalently any) p € X, the following
hold:

(i) X is 0-hyperbolic with respect to p;
(i) for all x,y € X we have (z,y), € A.

A slightly stronger version of the following characterisation was given by Bowditch [Bow24,
Lemma 15.1.2] in the case where A = R (in that case, it is enough to assume that X is path-
connected rather than geodesic).

Lemma 2.11. Let (X,d) be a geodesic A-metric space. Then X is a A-tree if and only if X
is a rank 1 median A-metric space.

Proof. Suppose that X is a A-tree. Let x1,29,23 € X and let m € X be the unique point
such that [z1,x2] N [z1,23] = [x1,m]. Then [z2, m] U [m,x3] is a segment so it follows that
m is a median of x1,x9,x3. Uniqueness of m follows from the uniqueness of the segments
[zi, z;]. If the rank of X is > 2 then there exists an isometric embedding ¢ : 0o — X, where
o9 is a 2-cube. For each (e1,¢€2) € 09, let x4, o, :== ¢((e1,€2)). Then [z00,z01] U [z0,1,%1,1] is
a segment and [z, 1,0] U [21,0,21,1] is a segment but their intersection is {x0, 21,1} which
is not a segment so this is a contradiction. Thus X has rank 1.

Conversely, suppose that X is a geodesic rank 1 median A-metric space, and let p, z,y, z €
X. If (z,y)p < min{(z, 2)p, (y,2)p}, then let 99 = m(p,x,y), x10 = m(p,z,2), x11 =
m(z,y,z2), xo1 = m(p,y,z). Upon observing that, for any a,b,c € X we have (a,b). =
d(c,m(a,b,c)), it is not hard to show that {0, z0,1, 21,0, 21,1} are pairwise distinct. It follows
that {zo 0, 20,1, 21,0, 21,1} is a 2-cube embedded in X as a median subalgebra. This contradicts
the assumption that X has rank 1 so X must be 0-hyperbolic. Lastly, if x,y,p € X then
(x,y)p = d(p,m(z,y,p)) € A so, by Lemma 2.10, X is a A-tree. O

Definition 2.12. Let (X,d) be a A-tree and x € X. The valence of x is the cardinality of
the set of geodesic-connected components of X — {x}. Given a cardinal x, we say that X has
valence k if every every point in X has valence k.

For any cardinal s, there is a unique complete R-tree with valence x [MNO92, Nik89].

2.3 Products

The usual ways of constructing product metric spaces apply to A-metric spaces. Of particular
interest to us is the ¢* product: Given N € {{1,...,n} : n € N} U {N} and a family of A-metric
spaces X = ((Xy, dpn))nen, the {1 product of X based at z = (2p)nen € | [,,cny Xn is the set

fl(é\,’,z) = {x € H X, : Z dp(Tp, 2n) < oo}

neN neN

equipped with the A-metric d(z,y) = ., .y dn(@n, yn). If each (X;, dy) is median then [ [, X,
is median and the median map is given by m(z,y, z) = (m(Zn, Yn, 2n) nen-
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2.4 BMW groups

Let T'y = (V4, Eq),T'y = (Va, E9) be simple graphs. The Cartesian product T of T'; and I'y is
the graph with vertex set V =V} x V5 and edge set E := {{(v1,v2), (w1, w2)} : {v1,w1} € Ey
and vy = wy or {wy,ws} € By and v; = wy}. Equivalently, the ¢! product I'; x I's admits a
natural cell structure where all the closed cells are either points, closed intervals or squares,
and I' is the 1-skeleton of I'1 x I's.

A BMW group is a group G which admits a free transitive action on the vertex set of the
Cartesian product of two locally finite simplicial trees 17,75 such that the action preserves
the factors, meaning that G < Isom(7}) x Isom(7%). All BMW groups admit a specific type
of presentation:

Definition 2.13. A BMW presentation is a group presentation of the form (A u X |R) where
A, X are disjoint finite sets and the set of relations R satisfies the following;:

e R = Ry L Ry where each r € Ry is of the form r = ¢? for some t € A U X and each
r € Ry is of the form r = axa’z’ for some a,a’ e AU Az, 2’ e X U XL,

eForallae AuA~' 2z e X U X! there exists a unique a’ € A U A~! and a unique

2’ € X U X! such that axa’z’ or a’2’ax or a'2'a’z™! or a’z~'a~'2’ belongs to Ry.

The following proposition is from [Capl9, Proposition 4.2].

Proposition 2.14. Every BMW group admits a BMW presentation. Conversely, let G =
(A U X|R) be a BMW presentation with R = Ry U Ry as above. Let A’ = {a € A :a® €
Ro}, X' :={re X :22€ Ra} andm = |A—A'|,m .= |A'|,n = |X — X'|,n' .= |B’|. Then the
Cayley graph of G with respect to AuX is the Cartesian product of two simplicial trees T s, Tx
with degree 2m + m/,2n + n' respectively. The action of G on its Cayley graph preserves the
factors and is free and transitive on the vertex set so in particular G is a BMW group.

Definition 2.15. A group presentation (S|R) is positive if every element r € R is of the form
r = xy where z is a non-trivial word in S and y is a non-trivial word in S~1.

We will only consider BMW groups which admit positive BMW presentations. In par-
ticular, if G = (A U X|R) is a positive BMW presentation then Ry = (J and for each
r = azxa'x’ € Ry we have |{a,a’} n A| = |{a,a’} n A7} = {z,2"} n X| = {z,2/} n X} =1

so it follows that |R| = mn and G is torsion-free [Capl9, Proposition 4.2(ii)].

Definition 2.16. A BMW group G is reducible if there is a finite index subgroup of G which
splits non-trivially as a direct product. Otherwise G is irreducible.

2.5 Cantor—Bendixson rank

Let Y be a Polish space (i.e. separable and completely metrisable). The Cantor-Bendixson
theorem (see e.g. [Kec95]) states that there is a unique decomposition of Y as a disjoint union
K(Y) u C, where K(Y) is perfect (i.e. closed with no isolated points) and C' is countable.
Any non-empty perfect Polish space contains a Cantor set, so the perfect subspace (YY) is
empty if and only if Y is countable.

The Cantor-Bendixson derivatives of Y are defined by transfinite induction. The first
derivative Y(!) is the set consisting of all the points of ¥ which are not isolated. If a is an
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ordinal for which V(@ is defined then Y (@+1) is the set of non-isolated points of Y@ If 3 is
a limit ordinal such that Y (@ is defined for all o < [ then Y6 = ma<gY(a). The Cantor—
Bendixson theorem implies that there is a countable ordinal o such that Y@+ = y(@) (je.
Y(®) = K(Y)). The minimal such « is called the Cantor-Bendizson rank (or CB-rank) of Y.

Remark 2.17. If Y is a countable compact metrisable space then its CB-rank must be a
successor ordinal. Indeed, if « is a limit ordinal and the CB-rank of Y is greater than or equal
to «, then there exists y5 € Y®) for all B < a and, by compactness, this implies that there
is a sequence in Y which converges to a point in N 5<QY(5) = Y@ Since Y is countable,
K(Y) = ¢ so a is the not the CB-rank of Y.

3 Ores and their extracted groups

The goal of this section is to introduce an abstract construction which we will use to produce
groups which act freely and transitively on various median metric spaces. A good example to
keep in mind while reading this section is the construction of a free group using words in an
alphabet A U A7,

We start with some notions and results from order theory. Recall that a partially ordered
set is a set Y equipped with a reflexive, antisymmetric and transitive relation <.

Definition 3.1 (Semilattice, meet, join, bottom). Let (Y, <) be a partially ordered set. Fix
z,yeY.

e Suppose there exists an element z € Y such that z < z, z < y and, for all s € Y such
that s < z and s <y, we have that s < z. Then z is called the meet of x and y and we
write T A y == z.

e Suppose there exists an element z € Y such that x < z, y < z and for all s € Y such
that x < s and y < s we have that z < s. Then z is called the join of z and y and we
write z v y = 2.

e Suppose there exists z € Y such that z < s for all s € Y. Then z is called the bottom
element of Y (by the antisymmetry of <, such an element must be unique).

The partially ordered set Y is a meet semilattice if, for all z,y € Y, the meet x A y € Y exists.

Where they are defined, the operations A and v are clearly associative, so we will write
xAaynz=zAyrz)=(@ryrzandaevyvz=zvyvz)=(xvy vz

Definition 3.2 (Orthogonality). Let Y be a meet semilattice with a bottom element id. We
say that two elements x,y € Y are orthogonal, denoted z L y, if x A y = id and x v y exists.

Remark 3.3. The relation L is symmetric and irreflexive on Y — {id}.

Definition 3.4 (Median semilattice). A meet semilattice (Y, <) is median if the following
holds. For any a,b,c €Y, the join (a A b) v (b A ¢) v (a A ¢) exists and, for any z € Y,

(xrnanb)v(@abarce)v(@ananc)=zA((and)v(barc)v(anc)).

The term median is justified by the following result of Sholander.
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Theorem 3.5 (Sholander, [Sho54]). Let (Y, <) be a median semilattice and define m : Y3 —
Y by m(a,b,c):=(aAb) v (bac)v (anc). Then (Y,m) is a median algebra.

Definition 3.6. Let (M, -, 1) be a monoid.

o M is cancellative if, for all x,y,z € M, we have that x -y = x - z implies that y = z and
T -y = z-y implies that = = z.

o Let « : M — M be an involution. Then M is a monoid with involution = if (z - y)* =
y* - x* for all x,y € M, where we denote by m™ the *-image of m € M.

Remark 3.7. If M is a cancellative monoid with involution = then 1* = 1. Indeed, for any
me M, we have 1 - m* =m* = (m-1)* = 1* -m* so 1 = 1* by right cancellation .

Definition 3.8 (Ore). An ore is a tuple (Y, <,id, 0, —1) such that the axioms (O1) — (O6)
below hold, where Y is a set, < is a partial order on Y, id € Y, o is a binary operation on Y
and —1:Y — Y is a map.

(01) (Y, x) is a meet semilattice with bottom element id.
(02) (Y, 0) is a cancellative monoid with involution —1 and identity id.

(O3) For all z,y € Y we have that z < y if and only if there exists z € Y such that y = x o z.

Let y~! denote the —1-image of each y € Y. An element f € Y is called inadmissible if there
exist ,1,z € Y such that y # id and f = z oy oy~ oz Otherwise f is admissible.

Let G € Y be the set of admissible elements. It follows from (O3) that if y € G and x <y
then z € G. Therefore (G, <) is a meet semilattice.

(04) (G, <) is a median semilattice.

(O5) Suppose that x,y € Y are orthogonal, x is admissible and there exists 3’ € G is such
that v y = z oy’. Then y is admissible.

(06) Let z,y € G be orthogonal and, using (03), let ',y € Y be such that z vy =z o0y’ =
yoa'. Then o,y are admissible, 27" 1L 3/ and y~! L 2/, and

pivy =a ey =y s () =y

Example 3.9. Let A be a non-empty set and A~! be the set of formal inverses of elements
in A. Let W = W(A U A™!) be the set of words in A U A™1. Given w,w’ € W, let wow' be
the concatenation of w and w’. We say that w < w' if and only if w’ = w ov for some v € W.
If w=aj'o...0a", where a; € A and ¢; € {1, —1} for each i, then w™!
Let id € W be the empty word. Then (W, <,id, 0, —1) is an ore.

4 E —€1
=a,"o...0a; .

Lemma 3.10. Let (Y, <,id,0,—1) satisfy (O1), (02) and (O3). Let x,y € Y and suppose

)y —

there exists z € Y such that x < z and y < z. Then there exists x v y €Y.
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Proof. By (O3) there exists a,b € Y such that z = xoa = yob. By (O1) there exists
¢ :=a ' Ab~1 and by (O3) again there exist o, b’ € Y such that a* = coa’ ' and b1 = cob/ .
By (O2) this implies that @ = a’oc™ and b = b’ oc¢™!. Note that zoa’oc™! = 2 = yob oc™!
so by (02) zoa =yol'. Let w:=zoda’. Then z < wand y < w by (0O3). Let 2’ € Y be such
that z < 2/ and y < 2’ and let w’ := 2/ A w. Then there exists ¢ € Y such that w = w’ o ¢
and, by the above argument there exist a”,b” € Y such that w’ = z 0ad” = yob”. We then
have

/ — " / .
Z=xOoa=Xxoa ocC 1:xua oc oc 1

:yub:ymblmc_l :yl:lb”DC,DC_l.
Since ¢ = a~! A b1, this implies that ¢ = id and therefore w’ = w. Therefore w < 2’ and
w=2zTVy. O

Remark 3.11. Suppose (Y, <,id,o,—1) is as in Lemma 3.10. Let z,y,z € Y be such that
r<yandy Lz Thenx A z=id and z,z <y v 2, so z 1L z by Lemma 3.10.

For the rest of the section, we assume that (Y, <,id, 0, —1) is an ore and G € Y is the set
of admissible elements in Y.

Definition 3.12 (Median). Define a map m : G — G by m(f,g,h) := (fArg)v(gah)v(f Ah)
for all f,g,h € G. The map m is called the median map and for all f,g,h € G, the point
m(f,g,h) is the median of f,g,h.

Remark 3.13. The map m is well-defined by (O4). By Theorem 3.5, (G,m) is a median
algebra.

Definition 3.14 (Orthogonal complement, parallel transport). Fix y € Y. The orthogonal
complement of y is the set y= := {x € Y : L y}. Define a map &, : yt —> Y by D, (z) = o,
where 2/ € Y is the unique element such that y v x = y o 2’ (existence is given by (03) and
uniqueness by (02)). The element ®,(z) is called the parallel transport of x along y.

Remark 3.15. Tt follows from (O6) that ®¢(G' N g*) = G n (g7')* and ®,-1 is the inverse
map of @, for all g € G.

Definition 3.16 (Faces). Given z,y € Y, we say that x is a face of y if z < y. Giveny = xoz
with z,zeY,let y —x:=z and let y — z := x.

Remark 3.17. The parallel transport maps preserve the face relation. Indeed, suppose that
a,z,y €Y with z . y and a < z. Thena Ay =id and a < z v ¥y, so a L y. Moreover
yo®y(a) =yva<yvae=yod,(x)by Definitions 3.1 and 3.14. By (02) and (O3), we then
have that ®,(a) < ®y(x).

In particular, it follows from Remark 3.15 that « = id if and only if ®,(x) = id.

Lemma 3.18 (Spanning a cube). Suppose that a,b,c € G are pairwise orthogonal. Then
D, (b) L ®y(c), Py(a) L Pp(c), Pe(a) L @o(b) and we have the following equalities:



Proof. By (06) we have that a=! L ®,(b),a " L ®,(c) and b = ®,-1(P, (b)), c = ®,-1(Py(c)).
Therefore, using Remark 3.17, if ®,(b) A ®4(c) # id then b A ¢ # id, which is a contradiction.
Thus @,(b) A P,(c) = id and, by a similar argument, ®p(a) A Pp(c) = Peo(a) A D (b) = id.

Let m := m(a v b,avebve) =avbveeGandlet z,y,z € G be such that m =
(avbox=(avec)oy=(bve)oz Then ®y(b)ox = Py(c) oy, Pp(a) ox = Py(c) o z and
®.(a) oy = P.(b) oz. Thus @,(b) L Pu(c), Pp(a) L Pyp(c) and @.(a) L ®.(b) by Lemma 3.10.
Moreover a,b,c < ao (Pg(b) v ®4(c)) so

ao®,(b)or=ao0P,(c)oy=m=<ao(DPy(b) v Py(c)).

Therefore ®,(b) oz = ®4(c) oy = Pu(b) v @4(c), which implies that ®g, ;) (Palc)) = =
and @g, () (Pa(b)) = y. By a similar argument, ®g,)(Ps(a)) = 2, P, ) (Pu(c)) = =,
Dg,(a) (Pe(b)) =y and P, (p)(Pe(a)) = 2. =

Definition 3.19. Let f, g € G. We say that f and g concatenate geodesically if f~' A g = id.
Lemma 3.20. Let f,g € G and suppose that f and g concatenate geodesically. Then fog e G.

Proof. Let a,b,c € Y be such that fog = acbob ! oec. Using the fact that admissibility
is preserved by passing to faces, we can assume without loss of generality that a A f =
c'Agt=id Notethata,f< fogandc ', g' <gloflsoal fandc! L g ! by
Lemma 3.10. Moreover, f v a < fogso ®¢(a) < g. Therefore ®¢(a) is admissible, which
implies by (O5) that a is admissible. Let f1 := f A (aob), fo :== f~f1, 01 .= ®f(a), g2 = g—¢
and z := @y, (a) (this exists by Remark 3.11). By (O6) we have x € G. Note that fioxz < aocb
so by definition fo A x = id and fo,z < foog, so fo L x. By (06) again, ®,(f2) € G and
b L q)x(fg).

Since (Y, n) is cancellative, ®,(f1) < b. Let by = ®,(f1),b2 :== b~ by. Then by L ®,(f2)
and ®g_(7,)(b2) < g2. Let y := z oby and note that y L fo. Let z := ®g (4,)(b2) and
gh = go —~ 2. Since yob loc = fyog, it follows from (O5) that y is admissible and from
(06) that y=' L ®,(f2) so by' L ®,(f2). Now b= v ®y(fa) < bl oc = ®,(f2) o ghso
27l < <I>q>y(f2)(b_1) < gb which implies that g = gy oz02z 1o (gh ~271). Since g€ G, z = id
so by = id.

Therefore ®,(f1) = b. It follows that b,b~' € G and b=! 1L 27!, The admissibility of f
implies that b1 A ®,(f2) = id so, since b~ oc = ®,(f2) 0 (g~ Py, (x)), we have b1 L &,(f2).
Applying Lemma 3.18 to the triple b=!, ®,(f2), 27!, we find that ffl 1 fg,gfl 1 g0 and
©p,(fi1) = @yi(g2)- By (06), f7h = fytofit = @p(fi) 0 ®pa(fo) " and g = g1ogo =
@gl—l (g2) 0@, (g7 ")~ s0, since f and g concatenate geodesically, @, (f; ') = id. This implies
that fi; = id and therefore b = id. O

Given f,g € G, observe that f = (f~' A g)~' and g — (f~! A g) concatenate geodesically.
We can therefore define an operation * : G x G — G by

frag=f="rg) Nolg= (" rg).

We will prove that = defines a group operation on G. To this end, let us prove some
supporting lemmas.

Lemma 3.21. Let a,b,c € G and suppose a and b concatenate geodesically. Let x,cs,c3 € G
be such that b=' = (b"' Ac)ox,en (b loa ) =(cab Do andc=(cab 1) ocyocs.
Then
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(i) © L eo;
(it) ®y(c2) <a™';
(iii) (aob)xc = (a = ®y(c) ) 0 Pe, ()"t 0cs.

Proof. Let F = :UACQ Then b! = (b"'Ac)oFo(x~F)andc= (cAb)oFo(cy~F)ocs.
Therefore (c Ab~!) o F < ¢ A b~! which implies that (c Ab"!)o F = c A b~! and then F = id
by left cancellation. Let U := ¢ A (b~'oa™1). Then

bloat=(cab Hozoa
=(cabNoco (b toat)=0).

Since (Y, o) is cancellative, this implies that z 0a ™! = cao (b7t oa™1) +~ U), so z v ¢y exists
by Lemma 3.10. This completes the proof of (i).

We have that zoa ™! = (b7 oa™!) = (e A b™!) =coo((b7'oat) ~ U) so there exists
A € G such that

b loa ) ~(cab ) =(xve)oAd=20d,(c2)0A.

Thus a=! = ®,(c2) o A by left cancellation, which proves (ii).
We have that

b loa ) ~U=(zoa™?) e
= (#0Ps(c2) 9 A4) = 2
= (c20Pey(2) 2 A) = 3
= P, () A

and A =a"!+ ®,(co) so A™1 = a = ®,(ca)"!. Therefore

(aob)xc=((aob) = ((@ob) " Ao lew((@ab)™ ac)

which completes the proof of (iii). O
Lemma 3.22. The operation * is associative.

The strategy of the proof of this lemma is inspired by the proof of Lemma 40.141 in
[CRHK24].

Proof. Fix hq, hg, hz € G and let B = hg A h . Then hy x hy = %1 D7L2, where hy = 711 oB1
and hg = B o h2 Let D := h3 A h and A := (hz A (h1 0 h2)™!) = D. Then there exist
W, hy € G such that h;' = Do W and hg = D o Ao hj. By Lemma 3.21

(i) W L A4,

ii) there exists b, € G such that hy = B, o &y (A)~! and
1 1
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Figure 1: Notation for the proof of Lemma 3.22. Elements of G are represented by paths,
two paths represent the same element if they have the same endpoints and the operation o is
represented by path concatenation.

(iii) (hy * he) *x hy = h o hly o hf, where hf :== ® (W)~ L.

Since D < ﬁ;l < h2_1 and D < hg, we have D < h2_1 A hs. So there exists E € G such that
h2_1/\h3 =DoE. Then DoE < hy =DoAohjsoE < Ao hj. AISODDEﬁhQ_I =
hy'loB'=DoWoB 'so E<WoB™l

Claim 1. E L W and ®w (E) < B~%.

Proof. Note that Do (EAW) < DoW = 7L2_1 so, since Do E = hy' A h3 < h3, we have
that Do (E A W) < 7L2_1 A h3 = D. Therefore E A W = id. Moreover hy! = Do W o B~}
and h;l Ahs=DoE, so E,W < W o B~! which implies that £ L W. Finally, E v W =
Wo®w (E) <WoB !so®y(E) < B! as required. |

Claim 2. £ 1 A.

Proof. Let F':= E A A. Then, by Remark 3.17, &y (F) < @y (A) and, by Remark 3.17 and
Claim 1, @ (F) < @y (E) < B~!. Therefore:

Bl =dw(F)o(B™' =@y (F)) and @ (A) = (D (A) = dw(F) Y ody (F)~L
But then

hy = 711 o B7!
= hy o (Pw(A) ' = S (F) ) e @ (F) ' o @w(F) s (B~ = Ow(F)).

Since hq is admissible this implies that ®y (F) = @y (F)~! = id and therefore F = id. Since
E < Ao hf, we then have that E 1 A. [ |
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In summary:

hi = hioB' = RWody(A)tody(E)o (B! —oy(E)),
hy = Bohy — B=®w(E) Hody(E) oW laD!
= (B - ‘Dw(E)il) o (I)E(W)fl oE o Dil,
hs = DoAohhy = DoAo®y(E)o(h~Pa(E))
= DoEo®g(A)s (b~ Pa(E)),

AlLW, ElAand E L W.
Recall that h3 A hy !'—= Do E. We therefore have:
ho * hg = [ha = (hg A hy ') "] o [hg = (ks A hy )]
= [(B=®w(E)™)o®p(W) '] o [®s(A) o (b + Pa(E))]

Let X 1= ®g,,(4)(Pw(E)) and Y 1= ®g 4 (Pp(W))~!. We then have:

hi * (ho * h3) = [h) 0 @y (A) ' 0 @y (E) o (B™! ~ w(E))]
x[(B=2w(E) ) a@p(W) ' o®p(A) o (hy - da(E))]
= [P o @w(A) o @w (BE)] » [@p(W) ! 0 @p(A) o (b + Da(E))]
= [1) 0 @, (4)(Pw (E)) 0 gy (PE(A)) ]
* [ @) (PE(A)) 0 Pg () (PE(W)) ™! o (hy ~ Pa(E))]
= [ o X]*[Y o (b~ @a(E)],
where we use (06) for the third equality. Let Z :== X 1 A (Yo (hl~®4(E))). Then Z < X!

and X~ 1 Y by Lemma 3.18, s0 Z 1 Y by Remark 3.11. It follows that ®y (Z) < h~®4(E).
But ®y(Z) < ®y (X 1) = ®4(E)~! by Lemma 3.18. Therefore, since

b= (Pa(B) = @y (Z)7) 0 @y (2) ' 0 @y (Z) o ((hy ~ Pa(E)) ~ y(2)),

and hj is admissible, we have ®y (Z) = ®y(Z)~! = id, which implies that Z = id. Moreover,
Lemma 3.18 implies that X 0Y = ®4 (W)™t 0 ®4(F) so

hi * (ha * h3) =h/1 * [X oY o (hé - CDA(E))]
=Ry * [@A(W) " 0 @4(E) o (hy ~ @a(E))]
=hiy * (hy o h3)
=h}oh}o hg
=(hy * hg) * hs. O
Theorem 3.23. (G, ) is a group.

Proof. By Lemma 3.22,  is an associative operation. It is clear from the definition that id is a
two-sided identity for . For any g€ G, gxg~ ' = (97 = ((¢7) "1 rg)to(g=((g7) L rg) =
id oid = id and similarly ¢~ * g = id so g~ ! is a two-sided inverse for g. O

Definition 3.24. We will call (G, x) the group extracted from Y.
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Example 3.25. Let (W, <,id,0,—1) be the ore defined in Example 3.9. Then the group
extracted from W is the free group F(A).

Remark 3.26. In general, there is no reason for a retraction ¥ — G which commutes with o
and —1 to exist. In certain nice settings however, it is possible to construct such a retraction
(see Sections 4.5).

Lemma 3.27. For each a,b e G, define:
I(a,b) :={ceG: (¢ xa) A (¢ xb) =id}.

Then I(a,b) = {c € G : m(a,b,c) = c}. It follows that the action of G on itself by left
multiplication is median preserving.

Proof. If the first part of the lemma holds, then m(a, b, c) is the unique element in the inter-
section I(a,b) nI(a,c) nI(b,c) for any a,b,c € G (see [Bow24, Lemma 3.2.1]). It is immediate
from the definition of I(a,b) that g x I(a,b) = I(g * a,g * b) for all a,b, g € G, so this implies
that g x m(a,b,c) =m(g*a,g*b,g*c) for all a,b,c,g € G.

We now prove the first part of the lemma. Let a,b, c € G be such that ¢ € I(a,b). Suppose
that a A b =1id. Then a A b,b A ¢,a A ¢ < ¢, so m :==m(a,b,c) < c. Let D € G be such that
c¢c=moD. Observe that (a nc) L(bac),som=(anc)v(brc)=(anc)oPyc(bac)=
(b Ac)o®yac(a A c). We then have:

ctxa=D1od,,(brc) o(a~(anc)
clxb=D"1ody,(arnc) o= (bnc).

Therefore D! < (¢7! % a) A (¢7! *b) which implies that D = id and m = c.
In the general case, let D, E, F' € G be such that

anb=(anbarc)oD, brc=(arbrc)oE, anc=(arbnc)oF.
Observe that D, E and F are pairwise orthogonal, so by Lemma 3.18, (D) L ®r(F) and
Op(D) L ®p(E). Let a/,a”, V', V", ¢, " € G be such that

a=(anrnc)od =(anrb)od, b=ObArc)ol =(anb)ob’, c=(arc)od =(bnrc)od.
Then Eo¢’ = Fod = (Ev F)od” for some ¢” € G such that ¢ " < ¢t and ¢ ' < 1.
But then

-1 -1 - -1 -1 _
" <d T od =ctxa and T <ol =,

so the fact that ¢ € I(a,b) implies that ¢” = id. Therefore ¢ = ®p(FE), and ¢ = ®p(F).
Moreover,
b=(arbrc)oEclt =(anbarc)oDaob”

so Eob = Dob = (E v D)obd” for some b” € G. Therefore ¥’ = ®g(D) o b” and
clxb= (I)E(F)fl o @E(D) o b™. By (OG), @E(F)il il (I)CDE(F)(CI)E(D» and

Dp(F) ' v Qg5 (Pp(D)) = ®p(F) ' 0 ®p(D) = 4, (5)(PE(D)) 0 (g, (p)(Pe(F)) "
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Thus ®g,m)(Pp(D)) < Pp(F) ' o ®g(D) s b” = ¢! xb. By a symmetric argument,
q)cI)F(E)((I)F(D)) < C_1 *x Q. By Lemma 3.18, (I)QE(F)((I)E(D)) = (P@F(E)((I)F(D))a so this
implies that D = id since ¢ € I(a,b). Thus a A b < c.

Now let A, B,C € G be such that a = (a Ab) 0 A,b = (a Ab)oB,c=(aAb)oC. Then
clxa=C"1xAand ¢! xb=C"! B so, by the above argument, we have:

m(a,b,c) = (anb)om(A,B,C)=(anb)oC =c.

Conversely, let a, b, c € G be such that m(a,b,c) = ¢. Suppose once more that a A b = id,
so(anc)L(barc)and c=(anc)oPyc(bac)=(bac)oDPysc(anc). Then

clxa=d . brc)o(a~(anc), clxb=d,(anc) o= (bnc)).

Let D € G be such that D < (¢! xa) A (¢! xb) and let Dy := D A @upc(b A )7L, Dy =
D A®ync(anc)™ Then Dy L @y c(anc)™ and ®g, qre-1(D1) < (brc) P A (b=(bac))
which, by the admissibility of b, implies that D; = id. By a symmetric argument Do = id, so
D1 ®,,(bac)tand D L ®y,.(a A c)”t. Let E, F € G be such that

D v Dypc(ba c)_1 =®ync(b A c)_1 oE, Dv ®y,.(an c)_l = Dpnc(an c)_l oF.

Then (b Ac)oF <band (a Ac)oE <a By Lemma 3.18 it follows that ®,,q)-1(F) =
Pgre)1(E) <anbso E=F=D=id

If we don’t assume that a A b = id, we have a A b < ¢ by assumption. So let A, B,C e G
be such that a = (a Ab)o A, b= (anb)oB,c=(aAb)oC. Then (ct*xa) A (ctxb) =
(C71xA) A (C™1* B) =id and c € I(a,b). O

Definition 3.28. Let A be a totally ordered abelian group. A A-length function on Y is a
map £ :Y — A such that

e ( is positive definite: £(id) = 0 and ¢(f) > 0 for all f # id;
o ( is symmetric: ¢(f~1) = {(f) for all feY;
o U(fog)=4L(f)+L(g) for all f,geY.

If A =R, we say that ¢ is a length function.

Suppose that ¥ admits a A-length function ¢ and define d : G x G — R by d(f,g) =
Uf~Lxg) =L(f) +4(g) —20(f A g)forall f,geG.

Proposition 3.29. The map d is a A-metric and the A-metric space (G,d) is median.

Proof. Symmetry and positive definitiveness of d follows immediately from the definition of a
length function. The triangle inequality follows from median property, which we now prove.
Let a,b,c € G be such that m(a,b,c) = c¢. By Lemma 3.27 (c™! xa) A (¢! xb) = id so
a txb=(a"txc)o(c! xb). Therefore d(a,b) = d(a,c) + d(c,b) and, by Lemma 2.7, (G, d)
is a median A-metric space with median map m. ]

Remark 3.30. It is immediate from the definition of the A-metric that the action of G on
itself by left multiplication is by isometries.
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Lemma 3.31. The rank of (G,d) is
tk(G) =sup{k e N:3 g1,..., 95 € G — {id} such that g; L g; Vi # j}.

Proof. Let k € N, let 0, = {0,1}* be a k-cube and let ¢ : 0, — G be a median-preserving
embedding. Up to composing with an element of G, we can assume that cp(O) = id. For each i,
let x; : {1,...,k} — {0,1} be the characteristic map of i. Then {¢(x;):1<i<k} < G—{id}
are pairwise orthogonal. Conversely, if {z1,...,2r} € G — {id} are pairwise orthogonal then
the set {id, \/,c; i : I < {1,...,k}} is an embedded k-cube. O

4 Actions on R-trees with prescribed axis stabilisers

We will use the framework established in the previous section to construct groups which act
freely and transitively on R-trees. The main results of this section are stated below and will
be proven in Section 4.4. In Section 4.5 we will show that some of the ores we construct admit
retractions to their extracted groups which commute with the operations.

Let Subyc(R) denote the set on non-cyclic subgroups of R and let K denote the set of
cardinals s such that x < 280,

Theorem 4.1. Let v : Subyc(R) — K be any map which is supported on < 2% elements of
Subyc(R). Then there exists a group G and a free transitive action of G on the complete
universal real tree T with valence 280 such that the following holds. For each H < R, let Ay
be the set of orbits G- L such that L < T is a line and the action Stabg (L) —~ L is isomorphic
to H ~R. If H € Subnc(R) then |Ag| = «(H).

Theorem 4.2. Let 3 < k < 280 be a cardinal. There are no free transitive actions on the
complete universal R-tree T,, with valence k.

Let k = 3 be any cardinal. There exists an incomplete R-tree Sy, with valence k and a free
transitive action G —~ Sy, for some group G, if and only if k is either infinite or even. If k
s finite and even, then this action is unique: if S is an R-tree with valence k, and H —~ S
s a free transitive action of a group H, then there is a group isomorphism G — H and an
isometry S, — S which is equivariant relative to G — H.

4.1 The initial construction

We first construct a family of groups acting freely and transitively on complete real trees with
large valence. The groups we construct to prove Theorem 4.1 will be subgroups of these.
Let a : R — R be the order reversing automorphism of R defined by a(A) = —\ for all
A € R. Let X be a set equipped with an action of R x, (x), where * is an element of order
two. We will abuse notation and identify R with the normal subgroup (R,id) <R %, (*).
Given ¢ € R such that ¢ > 0 and a map f : [0,¢] — X, let f* := %o f. The length of f is
¢ and is denoted by £(f) = /.

Definition 4.3 (Equivalence, length, identity). Two maps f : [0,£(f)] = X, ¢g:[0,4(9)] = X
are equivalent, denoted f ~ g, if £(f) = £(g) and |{s : f(s) # g(s)}| < Ng. The equivalence
class of a function f is denoted by f. The length of § is £(f) = £(f).

The unique equivalence class with length 0 is denoted by id.
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Definition 4.4. Let Vx denote the set of equivalence classes of maps [0,¢] — X. Define a
binary relation < on Yx by: f < g if £(f) < ¢(g) and, for all but countably many ¢ € [0, £(f)],
we have f(t) = g(t).

Lemma 4.5. (Vx, <) is a median semilattice with bottom element id.

Proof. Tt is immediate from the definition that < is reflexive, antisymmetric and transitive
so (Vx, <) is a partially ordered set. It is also clear from the definition that id is a bottom
element. Let S € Vx be a non-empty subset and let £ := inf{{(s) : s € S} and

m = Sup{)\ € [O,K] :5|[0’>\] ~ 5,‘[0’)\] Vse S}.

Let g := s][g ) for some s € S. Then the equivalence class g of g is independent of the choice
of s and g < &' for all ' € S. Moreover if f € Yx with f < s for all s € S then the definition of
m implies that f < g. Therefore g = /\ S is the meet of S and (YVx, <) is a meet semilattice.

Observe that, for any f € Vx, the set {g € Vx : g < f} is totally ordered. It follows that,

for any f1, f2, fs € Yx, the set {f; A f; : @ # j} is totally ordered so, fi A fm = \/{fi A fj 1 7 # j}
for some k # m. Let g € Vx be an arbitrary element. Then, for each ¢ # j, we have that

gnrnfinfi<gandgn fi nfj < fin[j < [ A fnso
\/{g/\fi/\fj:z';éj}ﬁg/\fk/\fms\/{g/\fl-/\fj:iqéj}.

Thus \/{g A fi A fj} =g A fx A fm, and Vx is median. O

Definition 4.6. e Define —1: Yx — YVx as follows. The —1-image of f is the equivalence
class of the map f~1:[0,4(f)] — X defined by f=1(t) = —L(f) - f*(L(f) —t).

e Define o: YVx x Vx — YVx as follows. Given f,g € Vx, fog € Vx is the equivalence class
of the map fog:[0,4(f)+ ¢(g)] — X given by

f(t) if ¢ € [0, £(f)];

fogt)= {_g(f) ~g(t—£(f)) otherwise.

e Let Tx € YVx be the set of admissible elements of Vx.
Lemma 4.7. (Vx,<,id, —1,0) is an ore.

Proof. (O1) and (O4) were proven in Lemma 4.5 and, for all f € Yx — {id}, we have f* = {id}
so (O5) and (O6) are trivially satisfied. It remains to check (O2) and (03).

(02) Let f,g,h € YVx. Then ¢((fog)obh) = £(f) + £(g) + £(h) = {(fo (goh)). Moreover for all
t € [0,£(f) + £(g) + ¢(h)] we have

f(®) if ¢ € [0, £(f)]
(fog)oh(t) =< —L(f) gt —L£(f)) if t e (£(f), £(f) + £(g)]
—((f) +£(g)) - h(t — (€(f) + £(g))) otherwise
= fo(goh)(®).
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Thus o is associative. Clearly id is a two-sided identity for o, so (Vx, o,id) is a monoid.

Let f,g,b € Yx and suppose that f o g = fobh. Then clearly ¢(g) = ¢(h) and, for all

but countably many t € (£(f),£(g)], we have —L£(f) - g(t — £(f)) = —£(f) - h(t — £(f)), so
g(t) = h(t) for all but countably many ¢ € [0, £(g)], which means that g = . Similarly,
if fog = bhog then £(f) = ¢(h) and for all but countably many ¢ € [0, £(f)] we have

f(t) = h(t), so f =h. Thus Vx is cancellative.
Let f € Yx. Then for all ¢ € [0,£4(f)] we have

(DTN = =) - (—0(F) - F2 () = (6(f) = )" = —€(f) - (E(f) - £(t) = f(#).

Therefore (f71)™! = § and —1 : Yx — Yy is an involution. Let §f,g € Yx. Then
(Fog)t) = Ufog) = ((f) + (g) = (g o f) and for all ¢ e [0, £(f) + £(g)] we have

(fog)H(t) = —(L(f) + £(g)) - (f o g)*(e(f) + L(g) — 1)
_ ) + Lg)) - (=) - glelg) —1)*if t € [0,4(g));
((f) + £(g) (f)+£(g)—1) otherwise;

— 1) if t € [0,4(g));
(L) - U = (8= £(g))))  otherwise
(

Therefore (fog)~! = g~! o 1. This completes the proof of (02).

(O3) Let f,g € Vx. It is clear from the definition of o that if there exists h € Vx such that
f = gob then g < f. Conversely suppose that g < f. Define h : [0,4(f) — ¢(g)] — X by
h(t) =€(g)- f(t+£(g)). Then f =gob. O

Let (Tx,*) be the group extracted from Vx and define d : Tx x Tx — R by d(f,g) =
(f~" * ).

Lemma 4.8. (T'x,d) is a complete R-tree.

Proof. By Lemma 3.29, T’y is a median metric space and it is clear from the construction that
Ty is connected. For all f € Yx — {id}, we have §~ = {id}, so Lemma 3.31 implies that Tx
has rank 1. Thus T’x is an R-tree by [Bow24, Lemma 15.1.2]; let us show that it is complete.
Let (fn)nen € Tx be a Cauchy sequence. Then the sequence (€(f,))nen € R is Cauchy and
has a limit £ € R. Define a map f : [0,¢] — R as follows. If ¢ < ¢ then there exists N; € N
such that, for all n > N;, we have £(f, A fn,) > t. Let f(t) = fn,(t) for all such ¢ and let f(¢)
be arbitrary. Then f, — f in Tx. O

Remark 4.9. If 2 < | X| < 2% then the valence (and the cardinality) of T is 22°°.

The following characterisation of admissibility for elements of )Vx will be useful.

Lemma 4.10. Let £ > 0 and f : [0,¢] — X be a map. The equivalence class of f is
admissible if and only if either £ = 0 or, for each t € (0,€) and every non-degenerate interval
[t—s,t+s] < [0,€(f)], there exist uncountably many 0 < € < s such that f*(t—e) # 2t- f(t+¢).
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4.2 Axes

Definition 4.11. Let G be a group acting by isometries on a metric space (Y,dy). An
azis in Y is an isometric embedding L : R — Y such that the stabiliser Stabg(L(R)) acts
coboundedly on L(R). We will also call the image of such a map an azis.

Let X,R,Yx,Tx be as in Section 4.1.

Definition 4.12. An element f € Vx is constant if there is a representative of § which is a
constant map. Given a constant element f € Vx, we will always assume that the representative
f is a constant map. The image of f is the image of f.

Lemma 4.13. Let x € X be such that x and x™* are in different R-orbits. Then every constant
element with image x is admissible.

Proof. Let f :[0,¢] — X be a constant map to € X and suppose that f is inadmissible.
Then, by Lemma 4.10, there exists A € [0,¢] and s > 0 such that [\ — s, A + s] < [0,¢] and
for uncountably many 0 < & < s we have f*(A—¢) = 2\- f(A+¢). But then 2* =2\ 2. O

Definition 4.14. Let x € X be such that x and z* are in different R-orbits. Define a subspace
L, ={feTx: f(t)=xzVYtel0,L(f)]}

The x-axis of T'x is the subspace L, := L, U L x. A subspace L € Tx is a standard axis if it
is an x-axis for some = € X such that Stabg(x) is non-trivial and z* ¢ R - x.

The lemma below follows immediately from the relevant definitions.

Lemma 4.15. Let x € X be such that x and x* are in different R-orbits. Then
Stabr, (Lg) = {f € Ly : £(f) € Stabgr(z)} = Stabr(x).

Moreover, if ¢ : L, — R is the map defined by o(f) = €(f) if f € Ly and o(f) = —£(f)
otherwise, then ¢ is a Stabr, (Lx)-equivariant isometry.

Corollary 4.16. Standard azes in Tx are azes in the sense of Definition 4.11.

Remark 4.17. Clearly ‘most’ lines in T’x will have trivial stabilisers. Moreover it is not difficult
to construct non-standard axes with cyclic stabilisers and even such that the generator of the
stabiliser acts on its axis with arbitrary translation length.

A more surprising observation is that it is also possible for a non-standard axis of Tx to
have a dense stabiliser. Suppose that, for some uncountable proper subgroup H < R and
x,y € X, the orbits R-z, R-2* Ry, R-y* are pairwise disjoint and Stabg(z) = Stabr(y) = H.
Let L < Tx be the set of elements of the form f : [0,¢] — X such that f(t) =z if t € H and
f(t) = y otherwise and let L := L u L*. The fact that H is uncountable implies that L is not
standard, yet Stabp, (L) = {f € L : {(f) € H} = H. This behaviour will disappear when we
pass to more sensible subgroups of Tx.
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4.3 Templates

We can now introduce the subgroup of T'x which will be used to prove Theorem 4.1.
Let S € Tx be a set. The closed subgroup {S) generated by S is the smallest closed
subgroup of Tx containing S, with respect to the topology induced by the metric d.

Lemma 4.18. Let S € Tx be a symmetric set which is closed under restriction (i.e. s~ € S
for all s € S and, if the equivalence class of s : [0,¢] — X is in S, then the equivalence class
of the restriction s|jg 4 is in S for all t € [0,£]). Then (S) and {S) are connected.

Proof. Let H < Tx be a subgroup and f,g € H be elements which are connected to id via
paths 75,7y : [0,1] — H. Then the composition f* 74 is a path from § to f x g and the
concatenation of 45 with f x 74 is a path from id to f* g. It follows that (S) is connected.
Now suppose that (f,)neny S H is a sequence which converges to f € H such that each f, is
connected to id via a path in H. Then we can assume without loss of generality that f, < f,4+1
for all n € N and fix geodesics v, : [0,4(f,)] — H connecting id to f,. Let v(¢(f)) = f and, if
0 <t <Lf),let v(t) = y,(t) for some (equivalently any) n € N such that ¢(f,) > t. Then
v :[0,£(f)] — H is a path connecting id to §. It follows that (S is connected. O

Definition 4.19. Given a subset Y € X, let Tx (Y) := (S), where S = U,ey L.

We will show that Tx (Y) is the universal real tree with valence 280 whenever 2 < |[R-Y| <

2% To do this, we will first characterise the elements of T'x (Y') using templates. We start by
showing that Tx (V) =Tx(R-Y) =Tx(Y*) =Tx(R-Y™).

Lemma 4.20. Let Y < X be non-empty and suppose that Stabg(y) # {0} and y* ¢ R -y for
allyeY. If H < Tx is a closed subgroup containing L, for each y € Y, then H contains
Ly.y and Ly.,« for each A € R.

Proof. Fix y € Y and, for each ¢ > 0, let f, € L, denote the constant element with length
¢ and image y. Suppose s € Stabg(y) and s > 0. Then ;! € H has length s and f;1(t) =
(—s)-y* = (s-y)* =y* forany t € [0, s]. Given any £ > 0 let s,¢ = 0 be such that s € Stabg(y)
and £ = s —t. Then §;1 «f; =} € Ly« so Lys < H. Now let A € R and suppose that A > 0.
For each ¢ > 0, let gy == f;l * faye. Since faig = fa o A fo, the element g, € H has length ¢
and ge(t) = A -y for all t € [0, \]. Thus Ly, < H. Suppose that A < 0. For any ¢ > 0, if
gy = (F* )7t * fi_, then g; has length £ and g)(t) = (=A) - y* = (A-y)*. Thus L, = H
and by the argument above this implies that L., = H. O

Definition 4.21 (Templates). Let £ € R with £ > 0. A countable set P < [0, /] is a template
of [0, ¢] if it satisfies the following.

(T1) If p € P and p > 0 then there exist py € P — called the predecessor of p — such that
p1 <pand Pn (p1,p) = . If pe P and p < £ then there exists ps € P — called the
successor of p — such that p < ps and P n (p,p2) = &.

(T2) The union U{[p,p’] : p,p’ € P and P n (p,p’) = &} has countable complement in [0, ¢].

Given a template P C [0, /], the inverse of P is the template P~!:= {{ —p:pe P}.

25



Note that (T2) implies that every point in the complement is an accumulation point of P
and that the closure P is countable.

Let £ > 0 and P < [0, /] be a template. There are two related but slightly different ways
of “filling in” a template to produce an element of Vx or Tx. In the first version, a sequence
of elements of X, indexed by P, directly defines a map. In the second, the input is a suitable
sequence of elements of Vx, also indexed by P, and the map they define should be viewed as
an infinite concatenation (so the action of R must be taken into account).

Definition 4.22 (Realising sequences). (i) Let (zp)pep be a sequence in X. The reali-
sation of (zp)pep is the equivalence class of any function f : [0,¢] — X such that
f(t) =z, if t € (p,p’) for some p, p’ € P such that P n (p,p’) = &. We say that (z,)pep
is admissible if §f € T'x.

(ii) A sequence (fp)pep S YVx is consistent if the following holds. For each p € P — {¢},
if p’ € P is the successor of p, then ¢(f,) = p’ — p and if ¢ € P then §f; = id. The
concatenation of (f,)pep is the equivalence class of any function f : [0, ¢] — X such that
f(t)=—p- fp(t —p) if t € (p,p') for some p,p’ € P such that P n (p,p) = &. We say
that (f)pep is admissible if f € Tx.

Definition 4.23 (Template ore). Let Zx be the set of realisations of sequences (z)pep < X,
where P < [0, /] is a template and ¢ > 0. The set Zx < Vx is called the template ore over X.

One checks easily that Zx is closed under the operations o and —1, and under the relation
<. Moreover the element id is the realisation of any sequence (z() so id € Z. Therefore the
following lemma follows immediately from Lemma 4.7.

Lemma 4.24. (Zx,<,id,0,—1) is an ore.

Definition 4.25 (Complexity). Given f € Zx, the complexity of f is the smallest countable
ordinal « such that f is the realisation of a sequence in X indexed over a template P whose
closure has CB-rank a. For each countable ordinal «, we denote by ZE?] the set of elements
of Zx with complexity < a.

Remark 4.26. The closure of a template is a countable compact Polish space, so its CB-rank
is a successor ordinal (see Remark 2.17). Therefore the complexity of an element of Zx is
always a successor ordinal. We will use this liberally from now on.

Lemma 4.27 (Inversion). Let f € Zx be the realisation (resp. concatenation) of a sequence
in X (resp. in YVx ) indexed over a template P < [0,£4(f)]. Then {1 is the realisation (resp.
concatenation) of a sequence in X (resp. in Vx ) indexed over P~1.

Proof. Let (z)pep S X be a sequence with realisation f. For each p’ = £ —qe P~1 — {¢}, let
p € P be the predecessor of ¢ € P, and let 2y == —£-z5. If £ € P! then let zy € X be an
arbitrary element. Then §~! is the realisation of (zy)yep-1.

Let (fp)pepr S Yx be a consistent sequence with realisation f. For each p’ = £ — ¢ €
P! — {¢}, where q € P is the successor of p € P, let gy = f;l. If ¢ € P~ then let gy := id.
Then ! is the realisation of (g,)yep-1. O

Lemma 4.28 (Refining). Let P < [0, ] be a template, let (zp)pep S X be a sequence and let
(fp)pep < T'x be consistent. For any t € [0,¢], there exists a template Q < [0,4], a sequence
(2¢)qe@ S X and a consistent sequence (8q)qeq < T'x such that:
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e t is an accumulation point of Q (in particular, t ¢ Q);
Q-Q=(P-P)uit)

the realisation of (24)qeq is equivalent to the realisation of (xp)pep;

the concatenation of (gq)qeq is equivalent to the concatenation of (fp)pep-

The process of replacing P with @ and either replacing (x,)pep With (24)geq or (fp)pep
with (g4)qeq is called refining. The fact that P — P < @ — Q ensures that, by repeating this
process a finite number of times, P can be refined to admit any finite set of points in [0, ¢] as
accumulation points.

Proof. Suppose that ¢ is not an accumulation point of P and t ¢ {0,¢}. Then there exists
p1,p2 € P such that p; <t < p and P n (p1,p2) < {t}. Let (tn)neny S (p1,t) be a strictly
increasing sequence which converges towards ¢, let (sp)neny S (£, p2) be a strictly decreasing
sequence which converge towards ¢ and let Q = (P — {t}) U {tn,Sn : n € N}. Then @ is a
template with non-trivial accumulation point ¢ and 0Q = 0P u {t}.

For each p € P—{t} let 2z, := x), and for each n € N let z;, = x;,, and z,, := x; if t € P and
Zs, = xp, otherwise. Then the realisation of (z4)4eq is equivalent to the realisation of (xp)pep.
For each p € P — {p1,t} let g, := fp. Let gp, == fyl[0,,—p,] and let g, : [0,p2 — 51] — X be
defined by gs, () = (s1—t)- fi(s+s1—t) if t € P and g, (s) = (s1—p1)- fp, (t+51—p1) otherwise.
For each n € N let g4, : [0, tn41 — tn] — X be defined by g, (s) = (tn —p1) - fpi (s + tn — p1)
and, if n > 2, let g5, : [0, sp—1 — sp] — X be defined by gs,(s) = (sn — t) - fi(s + sp — t) if
te P and gs,(s) = (sp —p1) - fpi (5 + sn — p1) otherwise. Then (gq)qeq is consistent and its
concatenation is equivalent to the concatenation of (f,)pep-

If t = 0 or £ then perform the above operation but only on one side of t. O

Proposition 4.29. Let Y < X be such that Stabgr(y) # {0} and y* ¢ R-y for ally € Y.
Then Tx (Y') is the set of realisations of admissible sequences (Yp)pep i R - (Y U Y™), where
P is a template.

Proof. We start by showing that the set of all such realisations is a closed subgroup. Lemma 4.27
implies that it is closed under taking inverses. Let £, ¢ > 0, let P < [0,/], P’ < [0,¢] be tem-
plates and let (yp)pep, (¥,,)perr € R (Y U Y¥) be admissible sequences with realisations f,
respectively. Let 7:= £(f = (f~1 A f)~1). By refining P, P" and (yp)pep, (¥, )pepr if necessary,
we can assume that 7 is a non-trivial accumulation point of P and ¢ — 7 is a non-trivial accu-
mulation point of P’. Let P” := (Pn[0,7])u ([{—T,(f*f )] n{p'—£€+27 : p' € P'}). Then P’
is a template of [0, £(fx§’)]. For each p e Pn P”, let x) := y, and for each p’ —¢+27 € P"— P
let @y _yyor = (£—27) -y;,. Then (z,7)7epr is admissible and the realisation of this sequence
is f » .

Observation 1. If §, g € T'x are such that g < f and § is the realisation of a sequence (xp)pep <
R- (Y uY*), where P < [0,£(f)] is a template, then g is the realisation of a sequence in
R- (Y uY™) indexed over a template. Indeed, up to refining P and (z,)pep, we can assume
that ¢(g) € P. Let P’ := {pe P :p < {(g)}. Then g is the realisation of (x)pep:.

Now let (fn)neny € T'x be a sequence converging to a point f € Tx such that, for each
n, if £, = €(f,) then there is a template P, < [0,4,] and an admissible sequence y(™ =

(y}?”))pepn c R- (Y U Y*) such that f, is the realisation of y(™. If £ := ((f) then (£, )nen
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converges to £. Take a subsequence of (f,)nen S0 that (£,,)nen is either strictly increasing or
strictly decreasing. If (£, )nen is strictly decreasing then f < f,, for almost all n, so f is the
realisation of some sequence in R - (Y U Y*) by Observation 1. So suppose that (¢;,)nen iS
strictly increasing. By Observation 1 again, we can replace each f, with a <-smaller element
so that f, < fp+1 for each n. For each n € N, refine P, and y(™ finitely many times so that
lp, is a limit point of P, for all m < n. Define

Pi= ] Pun (tnr, tn).

neN

Then P is a template of [0, ¢]. For each n € N and each p € P n ({y,—1,¢) let z, == yi(,”). Then
(2p)pep is an admissible sequence whose realisation is f.

By Lemma 4.20, the fact that all realisations of admissible sequences in R - (Y U Y*) are
in Tx (Y) follows from Lemma 4.30 below. O

Lemma 4.30. Let H < Tx be a closed subgroup. Let £ > 0 and let P < [0,¢] be a tem-
plate. Suppose that (hp)pep S H is a consistent and admissible sequence and let | be the
concatenation of (bp)pep. Then fe H.

Proof. We prove the lemma by transfinite induction on the Cantor-Bendixson rank o of P.
If @ = 1, then P is a compact set of isolated points and is therefore finite. Therefore f is
a finite concatenation of elements in H and is itself in H.
Suppose that « > 1 and recall that & = 8 + 1 for some countable ordinal 8 > 1. Let

K = F(ﬁ). Then K is a compact set of isolated points so K is finite. Let ko,..., &k, be the
elements of K u {0, ¢}, ordered such that 0 = kg < k1 < --- < k;, = £. Foreach 0 <i <m
choose a point k" = ki, | € (ki, kiy1) n P (this exists by (T2) because K n P = ). Let
fkt_ : [0,k — k;] — X be defined by f,;;(t) =k;- f(t+ k;) and let Sroir [0,kiy1 — k] = X

be defined by fi.  (¢) = kipy - f(E+ k). If f,;,f,;ﬂ € H for each 0 < i < m then

f=fo, * oy *Fh %% Fi  *f, € H. Tt therefore remains to show that f_, f,;,“ are indeed
elements of H for each 1.

Fix ke{ki:0<i<m}andlet Q:={p—k~ :pe Pn[k ,k)}. Then @ is a template
of [0,k —k~] and 0 € Q. If k = £ and ¢ ¢ K then the CB-rank of @ is at most 2 and f;
is the concatenation of (by), r-cq so f, € H by the induction hypothesis. So assume that

k € K. Then @(ﬂ) = {k — k™ } and there exists a strictly increasing sequence (g, )nen S @
which converges towards k — k= (because > 1). For each n, let Q, = Q n [0,qy], let G,
be the CB-rank of Q,, and let g, = Tz l[0,gn]- Then @y is a template of [0, ¢,], B, < B and
gn is the concatenation of (h,),_p-cqg,- By the induction hypothesis, g, € H for each n.
Moreover (gy,)nen converges towards f; so f;, € H. By a similar argument (f;)~' € H for all
ke {k; : 0 <i < m} and therefore §{ € H for all such k. O

Proposition 4.31. Let Y < X be such that each y € Y has a non-trivial R-stabiliser and
y* ¢ R -y for ally e Y. Suppose that |Y| < 280 and there exist y1,y2 € Y such that y1 # o
and y1 ¢ R-yi. Then (Tx(Y),d) is the universal R-tree with valence 2%0.

Proof. By Lemmas 4.8 and 4.18, Tx (Y') is a closed connected subspace of a complete R-tree,
so it is itself a complete R-tree. Since the action of T'x(Y') on itself is transitive, it suffices
to check that the valence of Tx(Y) at id is 2%°. Let x denote the valence of Tx(Y) at id.
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Two elements f, g € Tx (Y) lie in the same connected component of Tx (YY) — {id} if and only
if there exists ¢ > 0 such that f(¢) = g(¢) for all but countably many ¢ € [0,£]. Let ¢ € R,
¢ >0 and let P = {p, € (0,¢] : n € N} be a template of [0,¢] such that p, — 0. For each
subset Q € N let 2% = (a;]?n)pnep < X where :c]?n =y if n e Q and :1:]{}” = yo otherwise. It
follows from Lemmas 4.10 and 4.13, and the assumptions on y1, y2, that the sequence z** and
its realisation fq are admissible. Moreover, if Q,’ € N and the symmetric difference QA
is infinite then fo and fq lie in different connected components of Tx (Y) — {id}. Therefore
k= {0,111/ ~, where Q ~ @ if and only if |[2QAQ| < o0. Each equivalence class of subsets
has cardinality X so this implies that x > 280, Conversely, Proposition 4.29 implies that
cardinality of T'x(Y") is bounded above by that of C x (R- (Y u Y™*)), where C is the set of
countable subsets of R. Thus x < [Tx(Y)| < 2%, O

We can now prove that the only lines in Tx(Y) which can have dense stabilisers are
translates of standard axes.

Lemma 4.32. Let Y € X be such that each y € Y has a non-trivial R-stabiliser and y* ¢ R-y
forallyeY. Let L < Tx(Y) be a line such that Stabg(L) acts on L with dense orbits. Then
L =§xL" for some feTx(Y) and some standard axis L' < Tx(Y).

Proof. Up to translating by an element of Tx (Y'), we can assume that L intersects the identity.
Let f € L be a non-trivial element and let P < [0,4(f)] be a template such that f is the
realisation of a sequence in X indexed by P. Up to translating by an element of Tx(Y"), we
can assume that P can be chosen so that 0 € P. Let p € P be the successor of 0 and let z € Y
be such that f(t) = x for all but countably many t € [0, p]. The assumption on the stabiliser
subgroup of L implies that there exists id < g < f such that g € Stabp, (y)(L). Therefore
gof € L, where f":= fljg,. Now gof = b where h([0,£(g)]) = = and h([{(g),£(g) + p]) =
—{(g) - x. But since h € L and g < §, we have § < b therefore for all but countably many
t e [l(g),l(f)] we have —{(g) - x = f(t) = x. Thus b is constant with image z. It follows
by induction that g"” o f € L is constant with image x for all n € N. In particular, each g" is
constant with image x and ¢(g) € Stabg(x) so it follows that each g~ is constant with image
x*. Thus L = L, U L x. O

4.4 Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.1. Fix an arbitrary map ¢ : Subyc(R) — K. If ¢ is the zero map then let
Xo = R/Z u (R/Z)', equipped with the natural action of R and the involution (x + Z)* =
(—x+ Z), (x +2Z)' = —x + Z for all z € R. This defines an action of R x, (*) on X. Let
G = Tx,(Xo) and recall that, by Proposition 4.31, (G, d) is the complete universal real tree
with valence 280, By Lemma 4.32, all the stabilisers of lines in T'x,(Xo) are either trivial or
cyclic so the action of T'x,(Xo) on itself by left multiplication satisfies the conclusion of the
theorem. If ¢ is the characteristic map of R then let X := Xy u{z, 2}, where X is equipped
with the same action of R x,, (x) as before, R acts on {x, 2’} trivially and z* = 2/, (2/)* := .
Let G := Tx,(X1) and note that (G, d) is again the complete universal real tree with valence
2% Then by Lemma 4.32 the only orbit of lines with non-trivial and non-cyclic stabilisers is
the orbit of the standard axis L. It follows that |[Ay| = {G-L;}| =1if H =R and |Ag| =0
otherwise. Thus we can (and do) assume that ¢ is not the zero map or the characteristic map
of R.
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For each subgroup H € Subyc(R) let By = R/H u (R/H) and define an action of
R % () on By as follows. If r € R and x + H € R/H then r - (x + H) = r+x + H,
r-(x+H)Y =(r+z+H),and (z + H)* = (—z + H), (x + H)'* := —x + H. Let Xy
be the disjoint union of ¢(H) copies of By and let X = u{Xpy : H € Subyc(R)}. Since
DiHesubyo®) UH) < 2% we have | X| < 2%,

Let G = Tx(X). By Proposition 4.31 (G,d) is the complete universal real tree with
valence 280, Let H € Subyc(R). If L € G is a line whose orbit is an element of Ay then
Lemma 4.32 implies that L = f x L’ for some f € G and some standard axis L. Lemma 4.20
implies that, if y,7' € Y and ¢’ € R-{y, y*}, then L, L, are in the same G-orbit and it is clear
from the definition of the operation on G that, if ¥ ¢ R - {y,y*}, then Ly, L,/ are in different
G-orbits. By Lemma 4.15, if y € Y then G - L, € Ay if and only Stabgr(y) = H. Therefore
|Apr| is equal to the number of copies of By in Xp, which is «(H) by construction. O

To prove Theorem 4.2 we will need two more lemmas:

Lemma 4.33. Let T be a real tree and let G be a group acting freely on T. Let L < T be
a line such that Stabg (L) acts on L with dense orbits. Then, for all g € G, the intersection
gL n L is either empty, a point or a line.

Proof. Let M < T be a line, let ¢ : M — R be an isometry and let y := ¢~ (0). We will
say that the explicit stabiliser of M is K := ¢(Stabg(M) -y) < R. Note that K does not
depend on the choice of . It follows from the freeness of the action that, for any g € G and
x € M, we have g € Stabg(M) if and only if gz € M and d(z,gz) € K. Moreover, if g € G
then p o g~!: gM — R is an isometry, (¢ o g71)~1(0) = gy and ¢ o g~ (Stabg(gM) - gy) =
o(Stabg(M) -y) = K, so K is an invariant of G - M.

Let H < R be the explicit stabiliser of L. Let g € G be such that |gL n L| > 1. The
intersection L n gL is closed and connected so this implies that there is a non-degenerate
segment [x,y] € L n gL. By assumption, there exists h € Stabg(L) such that hx € [z,y].
Then hz € gL and d(z,gz) € H so h € Stabg(L) n Stabg(gL). If z € [z,y] is such that
d(z,y) < d(x,hz) then hz € L n gL and hz ¢ [x,y]. This argument applies to any non-
degenerate segment [z,y] S L n gL, so L n gL has infinite length. Since the action of G is
free, L n gL cannot be a ray, so we must have that L n gL = L. O

Given a group G acting freely and transitively on an R-tree T', we establish the following
convention. Identify G with T via an orbit map g — ¢ - xg for some xg € T and equip G with
the partial order defined by g < f if [id, g] < [id, f]. Note that (G, <) is a meet semilattice
and g A f # id if and only if f and g are in the same direction at id. For all g € G define
{(g) == d(id, g), where d is the metric on 7'

Lemma 4.34. Let k < 2% be a cardinal. Let T be a real tree which is not a single point and
such that there is a group G acting freely and transitively on T. If, for any line L < T, we
have | Stabg(L)\L| > &, then the valence of T is > k.

Proof. We first assume that the G-stabiliser of every line in T is at most countable.

Claim 1. Let f € G be non-trivial and, for each g < f, let hy :== g=1f A f. Then, for all but
countably many g < f, we have hy = id.
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Proof. Let A < G be the set of g < f such that h, # id and suppose that A is uncountable.
For each n € N, let A,, .= {ge A:{(hy) = 1/n}. Then A = U,enAy so there is some n for
which A,, is uncountable. Since [id, f] is a finite union of segments of length < 1/2n, there
exists a segment I C [id, f] with length < 1/2n such that P := A, n I is uncountable. We
can moreover assume, up to taking a subsegment with the same property, that I = [p1, p2]
for some p1,pa € [id, f] such that py,ps € A,. Let k := pl_lpg. Then k < hy, for all p e P so
pk < f. In particular, p1k? < f and pi1k < f which implies that k A k= =id. Let L < G be
the convex hull of (k) and note that L is a line. For every p € P we have p; < pk < p1k? and
it follows that pflp stabilises L, but there are uncountably many such elements.

Let Gy = {g € G : g < f} and define an equivalence relation ~ on Gy by: g ~ ¢ if
g Ag T f#id Ifg~g andg < g < fthen golg < g7 'f and (g7'¢) L~ 1f A
gf =4 -1 f Ag'f #id. By Claim 1, there are at most countably many such elements
g '¢ < g7 'f. It follows that equivalence classes of G ¢ are at most countable, which implies
that |G/ ~ | = 2%, and thus the valence of T is > 2%.

Now assume T has valence < 280, By the above argument, there is a line L < T whose
stabiliser is uncountable. Up to translating L by some element of G, we can assume that
id € L. The orbit Stabg(L)-x is dense in L for any = € L so, by Lemma 4.33, for any f, g € G,
the intersection fL n gL is either empty, a single point or a line. Therefore, if f,g € L and
ftAagt#id, then f7'L = g7'L so fg~! € Stabg(L). By assumption |Stabg(L)\L| > ~
so this implies that the valence of T' is bounded below by k. O

Proof of Theorem 4.2. Let k = 4 be a cardinal which is either infinite or even. Let I, be a
set with cardinality x/2 and let X, := {z;, 2] : i € 1.}, equipped with the trivial action of R
and the involution * : z; — 7, 2} — z;. Let H, < Tx, (X,) be the subgroup of complexity 1
elements of Tx, (Xx). Then H, is an incomplete real tree and the set of directions at id is in
bijection with X.

Next, fix a cardinal 3 < k < 2% and suppose there exists a real tree T' with valence x and
a group G which admits a free transitive action on 7.

Suppose T is complete. We will show that x > 2%, leading to a contradiction. We will
need to construct a set {aj,,as2, € G : n € R} such that ¢(a;,,) < 1/n? for all n and, for all
n,m € N, we have al_ﬂl1 A1, = al_’i A A2m = A2p A a;}n = id. To this end, we first show
that there exist lines Ly, Ly < T such that L1 n Ly = {id} and the actions Stabg(L;) —~ L;
have dense orbits.

By Lemma 4.34, there exists a line Ly € T with uncountable, and therefore dense, sta-
biliser. Up to translating by an element of G, we can assume that id € L. If the stabiliser
of L; is not transitive, let g € L1 — Stabg(L1) and Lo = gflLl. Then Ly # L1 and id € Ly
so by Lemma 4.33 L1 n Ly = {id}. If Stabg(L;) is transitive then Stabg(L;) = L;. Let
H < G be the set of elements g € G such that the segment [id, g] does not intersect any
translate of Lj in a non-degenerate segment. If g, h € H, then [id, gh] = [id,¢'| U ¢ - [F/, k]
for some ¢ < g and B’ < h. For all k € G we have [id,¢'] n kL1 < [id,g] n kL; and
g - [W,h] n kL = ¢ - ([id,h] ~ ¢ kL) so |[id,gh] » kL] < 1 and gh € H. Also
[id,g~ '] nkLy = g~ '-([id, g] » gkL1) which has cardinality at most 1 so g~ € H. Thus H is
a subgroup of G. It is clear from the definition that H is a subtree of G. It follows from the
fact that Stabg(L1) = Ly that H is non-trivial — more precisely, the valence of H is k — 2.
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Thus by Lemma 4.34 there is a line Ly € H containing id such that Stabg(L2) = Stabg(L2)
acts on Lo with dense stabilisers.

Now fix rays L;r € L; based at id for each i. For each n € N, let a1, € Lf N
Stabg(L1),a2, € Ly n Stabg(L2) be such that 0 < l(a1,) < ¢(azn) < 1/n%. Then for
all n,m e N, al_ﬂl@,al_ﬂlneLl — L{ and aik,ai%neLg — L3 so

—1 _ -1 -1 _ -1 -1 s
Al A Qlm = gy A Qg gy = A1 A Q2m = Qg A QL = id.

Given a map 6 : N — {1,2}, define ¢ = ag(1),1 - - - Ao(n),;m- LThe way we chose the a1 ;’s and
az;’s implies that E(gz) = Z?’:l f(ag(i)ﬂ-), gg < gzﬂ and (E(gg))neN is convergent, so (gfb)neN
is Cauchy and has a limit ¢’ € G. Tt also follows from the choice of ai;’s and ag;’s that, if
0 # ¢, then (¢°)~' A (¢°)~" = id which means that T has at least 2% directions at id.

Finally, suppose that x is finite. By Lemma 4.34, there is a line . € T such that
| Stabe(L)\L| < k. The additive group R has no finite index subgroups, so this implies
that Stabg (L) acts transitively on L. We assume without loss of generality that id € L and
note that L = Stabg(L) in this case. Let H € G be the set of elements g € G such that the
segment [id, g] does not intersect any translate of L; in a non-degenerate segment. Recall
that H is a subgroup of G' and a subtree with valence k — 2. It follows by induction on &
that « is even and there are lines Ly,..., L, S T such that L; n L;j = {id} for all i # j and
Stabg(L;) = L; for all 1.

To prove the uniqueness statement, recall the definition of the group H, from the first
paragraph of this proof. For each i € {1,...,x/2} fix an isometry ¢ : L, — L; such that
1;(id) = id. These extend to an isometric and homomorphic embedding ¢ : H, — T.

It remains to show that 1 is surjective. Let p € T be in the closure of ¢)(Hy) and let
(hn)nen € Y(Hy) be a sequence with limit p. Since 9 (H,) is connected, we can assume
without loss of generality that h, < h,41 for all n € N. Each p~'h,, lies in the same direction
at id and ¢(p~'h,) — 0. Therefore there exists i € {1,...,x/2} such that , for sufficiently
large n, we have p~th, € L; < ¥(H,). Thus p € ¢(H,) and 1 (H,,) is closed. Now suppose
there exists p € T —(H,) and let p’ € ¢(H,) be the closest point projection of p onto ¥ (Hy).
Then [p/,p] n¥(H,) = {p'}, so p lies in a different direction at p’ to any point of ¢(H,). But
since the valence of H, is s, this implies that the valence of p’ in T is > k + 1, which is a
contradiction. O

Remark 4.35. Let k = 4 be a cardinal which is not both finite and odd, and let H,; be the
group defined at the start of the above proof. Then H, is isomorphic to the free product of
r copies of R and the action of Hy on itself is precisely the action constructed in [CM12] for
free products of copies of R.

For each i € I, let R; = R. Let x;_R; be the free product of {R; : i € I,;}. Recall that,
for each i € I, since Stabpy, (Lz,) = Ly,, the map Ly, — R; which maps f € Ly, to £(f) if the
image of f is x;, and maps f to —{(f) otherwise, is an isomorphism. The group H, is generated
by Uier, Lz, , so these isomorphisms extend to an isomorphism v : H, — #1_R;. Moreover,
length function £o¢)~! : x; R; — R is precisely the Lyndon length function defined in [CM12]
to construct a free transitive action on an R-tree. It follows that the resulting free transitive
actions are isomorphic.

If k = 2% then H, —~ H, is also isomorphic to the free transitive action on Uryson’s tree
constructed in [Ber89, Ber19].
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4.5 Reduction retraction

Suppose that z* ¢ R - 2 and Stabgr(x) is non-trivial for all z € X.

Proposition 4.36. There exists a retraction % : Zx — Tx(X) such that (fog)? = (f% o
_ ~1
%) =§ %% and (71)* =*" for all f,g € Zx.

Let us start with some terminology.

Definition 4.37 (Reducible at t). Let £ > 0 and @ < [0,¢] be a finite template. Let
(fe)qe@ S T'x be a consistent sequence with concatenation f. We say that f is reducible at
t if there exists t1,t2 € @ with ¢; < t < tg such that @ n (t1,t2) = {t} and there exists
0 < s < min{t — t1,t2 — t} such that for all but countably many 0 < ¢ < s we have

fil (&) = fule).

Remark 4.38. If f is the concatenation of another finite sequence (f,)yeq € Tx then t € Q'
and f is also reducible at ¢ with respect to (ffl )qeq- Thus reducibility at ¢ is well-defined.

We now define reduction of a finite sequence of elements of Tx.

Definition 4.39 (Reduction of a finite sequence at ¢). Let £ > 0 and @ < [0, /] be a finite
template. Let (f;)qeo S T'x be a consistent but inadmissible sequence with concatenation f
and suppose that f is reducible at ¢t € ). Let ¢; be the predecessor of ¢ and t5 be its successor.
Let o > 0 be the maximal 0 < s < min{t — 1,2 — t} such that f*(t —t; —¢) = 2t - fi(e)
for all but countably many 0 < ¢ < s. Let Q' := Q U {t — 0,t + 0} and define a sequence
(f,)qeqt < Tx as follows:

e if g <tj or g > ty, then f} = f,;

o if ty #t— o, then ff = fi,l[04—t,—0];

o fl . :[0,0] > X is defined by f_ (u) = (t—0)- fr,(u+t—t; —0);

o f{ = filjo.0);

o if t + 0 # to, then f} , :[0,io —t — o] — X is defined by ff,  (u) =0 fi(u + o).

Observe that the concatenation of (f}),eqt is f. Now define

Qr={geQ :q<t—o}u{qg—20:qeQ' q=t+a}
and note that Q; is a finite template of [0,¢ — 20]. Define rg; : Q' — {t} — Q¢ by ro.(q) = ¢
if g <t—o and rg(q) = ¢ — 20 otherwise.
Given g € @y let f((lt) =, ifg <t—oand ft(lt) = ff]—i—?o‘ otherwise. The reduction red(f, @, t)
of (f,@) at t is the concatenation of (fgt))qut.
Remark 4.40. By the maximality of o, if t — o # t; and t + o # t5 then §(*) is not reducible

at t — 0. This implies that the number of points at which red(f, @, t) is reducible is strictly
smaller than the number of points at which f is reducible.
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Lemma 4.41. Suppose that £,Q, (fq)qeq and | are as in Definition 4.39 and that | is reducible
at the points s,t € Q. Let U be the template and (gy)uer be the sequence obtained by first
reducing § at s then at rq ¢(t) and let V' be the template and (hy)wev be the sequence obtained
by reducing § first at t then at rg+(s). Then U =V and (gu)uer = (ho)vev -

Proof. Relabel s and t if necessary so that s < ¢ and let s1, 50 € Q°, t1,t2 € Q! be such that
51 < 89, t1 < to, Q% N (s1,82) = {s} and Q' N (t1,t2) = {t}. Let 0 := s — 57 = 89 — s and
T :=1t—1 = ty —t. First suppose that sy < t;. It is clear from the definition that the
reduction of x at s is reducible at 7 s(¢) and similarly the reduction of x at ¢ is reducible at
rQ,:(s). Since the collapsed intervals are disjoint, it is clear that U = V and (gu)uetr = (bo)vev
in this case.

So suppose that t; < s9. In this case s1 < s < t; < 89 <t < ty. Let ¢/ := t; — s and
7' =+t — s9. Then

={peQ:p
={peQ:p

siyu{p—2(c+7):peQ,p >t}

<
<s1tuf{p—2(t—3s):peQ,p =t}

and

V={peQ:p<s—o}u{p-20r+0):peQp=>t}
={peQ:p<s—dulp—2(t—s):peQp=>ta}.

Since ty —2(c + 7') = s — ¢/, we indeed have U = V.

Let s} € @ be such that s} < s and Q N (s],s) = & and let t; € @ be such that ¢ < ¢, and
Qn(t,ty) = . Foreachp < s}, gp = fp = hp. Alsoif s; # &) then 9s, = (fs)[0,51—5,] = It -
We have g5, : [0,7—7'] — X is given by g, (7 ) (t+71")- f(r—i—t—H’)and hs, : [0,0— 0] — X
is given by hg, (1) = s1- f(r + s1). Note that 7 — 7/ = 0 — ¢/ and ¢ is the successor of s in Q.
By assumption, (f§,)~ = § and (i)~ = f}. Therefore, for all r € [0,0 — o],

s f(r+s1)=f5(r)= () r)=—0-(s- f(s+ (o =7))* = —s2- [*(s2 —7)
and

t+7)-fr+t+7)=1"fl(r+1)
=7 (ff) "+ 1)
=(r'=7)-(t1- flt—(r+7)))"
=—59- f*(s2—7)

Lastly, for all p € @ with p > t}, we have Ip—2(t—s) = fp = hp—2(t—s) and, if ty # ), then
gt27ht2 . [0 tQ ] — X are defined by th( ) htg( ) = ft<7~ + 7—)_ ]

Combining Lemma 4.41 with Remark 4.40, the following is well-defined.

Definition 4.42 (Reduction of a finite sequence). Let £ > 0, let @ < [0, £] be a finite template
and let (f4)qeq be a consistent sequence with concatenation f. If f is reducible at t € @ then
reduce it at ¢. If red(f, @, t) is reducible at ¢’ € @y then reduce it at ¢’. Iterating this procedure,
we eventually obtain an admissible element fé, which we call the reduction of § with respect

to Q.
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Lemma 4.43. Suppose that m > 0 and Q = {g, : n € N} < [0, m] is a template such that
qn < qn+1 for each n € N. In particular, m is the unique accumulation point of Q). For each
n, let Qn = {q : 1 <i<n}. Let (fg)qeq S Tx be a sequence and for each n, let g, be the
concatenation of (fq)qeq,- Then ((gn)é)neN C Tx(X) is Cauchy.

Proof. Observe that d((gnﬂ)é, (gn)é) < 2(gn+1 — gn) — 0 as n — . O

Definition 4.44 (Reduction of a Cauchy sequence). Let m,Q, (f;)qeq, (gn)nen be as in
Lemma 4.43 and let § be the concatenation of (f;)qeq. The reduction of § with respect
to @, denoted fé, is the limit of the Cauchy sequence ((gn)é)neN.

Proof of Proposition 4.36. Let us define % : Zx — Tx(X). Let f € Zx be an element with
complexity a. We proceed by transfinite induction on a.

First suppose that o = 1 and fix a sequence = (xp)pep S X such that f is its realisation.
Since P is finite, we can (and do) assume that it is minimal among the set of templates for
f. For each p € P — {{}, let p’ € P be the successor of p and define f, : [0,p’ — p] — X by
fp(t) = p-xp for all t. Let fy := id. Then f§ is the concatenation of (f,)pep. The reduction of f
is f# := f/ in the sense of Definition 4.42.

So suppose that a = §+1 for some countable ordinal 5 and suppose that, for any g € Zg?]
(recall Definition 4.25), the reduction g” of g has been defined in such a way that it depends
only on g. Suppose moreover that the following holds.

(C) Let m > 0, let Q < [0,m] be a template such that Q¥¥) = m and fix a sequence
Y = (Yg)geo < X. Let {g, : n € N} € @ be such that ¢, < gn41 for each n € N,
so that (gn)nen is a strictly increasing sequence with limit m. For each n € N let
Qn = {qg € Q :q < g} and let g, be the realisation of (y4)se,. Then (g, )nen is
Cauchy.

(F) Iffg e 24 then (jog) = f*=g”.
@ 1t fe 2P then (1) F =4,

In the case where = 1, Property (C) holds by Lemma 4.43 and Property (F) holds by
Lemma 4.41. To check Property (I) in this case, recall that ! is the realisation of the
sequence (—{ - y»),ep-1, where Pl={{—-p:pePlandy,=—L" z;, where p' € P is the
predecessor of £ — p € P. Property (I) therefore follows from Definition 4.42.

Now let f € Zx be an element with complexity «. Let £ := £(f), let P < [0, £] be a template

and (xp)pep S X be a sequence with realisation f. Suppose moreover that F(B c @(ﬁ) for

any template @ which indexes a sequence in X with realisation f. Note that this property

®) unique (although P itself may not be). Since the complexity of f is «, PP s

renders P
finite.

1t PV = {¢}, then let {g, : n € N} < P be such that g, < gn4+1 for each n € N, so that
(gn)nen is a strictly increasing sequence with limit £. For eachn e Nlet P, :=={pe P : p < p,}
and let f, € Z18] be the realisation of (2,)pep,. By Item (C), the sequence (f,/)nen is Cauchy.

Let f* € Tx(X) be the limit of (f)nen.
1t P = {0} then let §# == (-1 7).
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Now suppose that PP _ {0,¢}. Choose a point t € P and let P, := {pe P :p < t}
and Pf :={p—t:pe Pandp >t} Then P, and P} are templates of [O,t] and [0, ¢ — t]
respectively. For each p € P, let x,, := z;, and for each p € PJr let a: =1t xpe. Let f, ft+
be the realisations of (2 ), P and (x )pE p+ respectively. Then let f/ be the reduction of

f; o fzr with respect to the template {0, ¢, ¢}.
Claim 1. Ift,t' € P then §/ = f,.

Proof. Relabel t and ¢’ if necessary so that ¢t < . Let Py = {p—t:pe Pt <p<t}
and note that P, is a template of [0,¢ — t] whose closure has CB-rank < §. Let i (4]
denote the reduction of the realisation of (,+¢)pe Py, t,] and let Q = {0,¢,t,¢}. It follows from
the definition that §;" = (4 ft,)Q and f, = (f[t ] ) o ft) . Therefore f/ is obtained from
(F,)~ 1 ofpe,7 of, by first reducing at ¢’ then at rpy (t) and §,/ is obtained from (f; )~ b of
by first reducing at ¢ then at rp4(t'). Thus f/ = §; by Lemma 4.41. [ |

The reduction of § is §* = f/ for any t € P such that if s € P with s < t and
P n (s,t) = J then xg # x;. In particular any template for § contains ¢ so the definition of
§* does not depend on P.

In the general case, let by, ..., by, € [0,¢] be such that by < - -+ < by, and P {0,¢} =
{b1,...,bp}. For each i € {0,...,m — 1}, let P, == {p—b; : p e Pb; < p < Z+1} and
fo, 1 [0,bi41 — bi] = X be defined by fp,(t) = f(t + b;). For each such i, the reduction fbi_ has
been defined. Moreover §f = fg o... o f;, so let §* be the reduction of the consistent sequence
(fbi-)iE{l,..‘,mfl} with respect to the finite template {bo,...,by} < [0,¢]. The reduction of § is
well-defined by Lemma 4.41 and the uniqueness of {by,...,b,,} while Property (C) holds by
Lemma 4.43. Property (F) is checked in the claim below. Property (I) follows immediately
from the construction.

Claim 2. Letf,ge 220 Then (fog)? = (fPcg#)? =f xg’.

Proof. If the complexities of both f and g are strictly less than «, then the claim follows by
the induction hypothesis. So suppose that at least one of f, g has complexity a.

Let ¢ = ((f),m = {(g) and let P < [0,¢],Q € [0,m] be templates which can index
sequences whose realisations are f and g respectively. Suppose moreover that P(’B) c ﬁ(ﬁ) for

any template P’ which indexes a sequence in X with realisation f, and similarly @(5) c @(B)
for any template Q' which indexes a sequence in X with realisation g.
1teeP? oroe @(6) then, by definition, (fog)* = ¥ og”)* = §* xg*. So suppose
that ¢ ¢ PP and 0 ¢ @(ﬁ). Let p = maxP? | {0} and ¢ = min Q¥ U {l(g)} and let
= fliop) and ¢" := q - glig,e9)]- Let b1, b2 € Tx(X) be such that § = f obh; and g = hao ¢,
sofog=1fobhyobhyog. Then, using the induction hypothesis and Lemma 4.43, we have
(h1obe)® = (bf = h{). Therefore
$
(f‘ng‘)‘ (7 ob) o (b og "))’
o (b 0b5) " og”)’

o(hiob)’og ;);



The first and last inequalities follow from the definition of reduction and the second follows
from Lemma 4.41. |

This completes the proof of the proposition. O

5 Actions on A-trees

Some of the ideas from the previous section can also be used to construct actions on A-trees
for arbitrary totally ordered abelian groups A. Since we do not assume that A is uncountable
or that every bounded set in A has a supremum, the exact analogue of the construction does
not work. On the other hand, the notion of completeness is no longer very relevant in this
context so there is no need for the more involved notion of templates introduced in Section 4.3
to ensure completeness. The group we obtain will be an analogue of the subgroup of Tx (X)
consisting of elements with complexity 1.

As before, the construction allows for flexibility with respect to the stabilisers of ‘lines’.
To illustrate this, we will prove the following proposition.

Proposition 5.1. Let A be a totally ordered abelian group, let H < A be any subgroup and
let k = 2|A/H|. Then there exists a group G acting freely and transitively on a A-tree T
with valence k such that there exists a subspace L < T and isometry ¢ : L — A (where A
is equipped with the A-metric d(A1, A2) = |\ — A2|) such that ¢(Stabg(L) - x) = H, where
x = ¢ 1(0). In particular Stabg(L) =~ H.

Let ao : A — A be the order reversing automorphism of A defined by a(A) = —\ for all
A€ A. Let X be a set equipped with an action of A x,, (x), where = is an element of order
two. We will abuse notation and identify A with the normal subgroup (A,id) <A x, (x).

Definition 5.2. Let Vx denote the set of maps f : (0,¢] — X, where ¢ € A with ¢ > 0, such
that, for some k£ € N U {0} and some finite sequence 0 = pg < -+ < pr = ¢, the map f if

constant on each interval (p;,p;+1]. When ¢ = 0, f is necessarily the empty map, which we
denote by id : @ — X. The length of f: (0,¢] — X is £(f) :== .

Remark 5.3. We can define templates for intervals in A in analogy with the notion for intervals
in R (see Definition 4.21). Then the set P := {py,...,px} in the above definition is just a
finite template for the interval [0, ¢] and f is the realisation of a sequence (z,)pep < X.

Definition 5.4. Fix f,g € Vx.

e Define f=1: (0,4(f)] — X as follows. Let {po,...,pr} S [0,£] be a template for f and
for each i € {0,...,k — 1} and t € (p;, pic1] let f7H(t) = —L(f) - f*(piz1)-

e Define fog: (0,£(f) + £(g)] = X by

_ ) if t € (0,£(f)];
foglt) = {—E(f) ~g(t—2(f)) otherwise.

e We say that f < g if f is a restriction of g.

Lemma 5.5. (Vx, <,id,0) is an ore.
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Proof. Tt is straightforward to see that (Y, <,id) is a median semilattice. The rest of the proof
is completely analogous to that of Lemma 4.7. O

Let (Sx,*) be the group extracted from YVx.

Lemma 5.6. The map £ : Yx — A is a A-length function (Definition 3.28). If d is the
resulting A-metric on Sx then (Sx,d) is a A-tree.

If © and x* are in different A-orbits for all x € X then the valence of Sx is the cardinality
of X.

Proof. Tt is clear from the definition that ¢ is a A-length function. By Proposition 3.29 (Sx, d)
is a median A-metric space. For any f € Sx — {id} we have f* = {id} so Sx has rank 1 by
Lemma 3.31. For any f € Sx, the map ¢ € [0,£(f)] — flo € Sx is a geodesic from id to f.
Therefore Sx is a A-tree by Lemma 2.11.

Fix an element A € A with A > 0. If z and x* are in different A-orbits then the constant
map f; : (0,A] — X with image x is admissible (by a similar argument to the proof of
Lemma 4.13). Assume that  and z* are in different A-orbits for all z € X. For all  # y
we have f; A fy = id and for any g € Sy there is some x such that f, A g > id, so the set of
directions at id is in bijection with X. O

Proof of Proposition 5.1. Let X = (A/H) u (A/H)' equipped with the obvious A-action and
define x : X - X by A+ H)* = (=X + H) and (A\+ H)" = -\ + H for all z + H € A/H.
This defines an action of A x, () on X. Let (Sx, ) be the resulting group, equipped with
its canonical A-metric d. Then Sx is a A-tree with valence | X| = 2|A/H|. Moreover, for each
x € X, there is subspace L, := {f € Sx : f is constant with image x or z*} and the map
¢ : Ly — A, defined by o(f) = £(f) if the image of f is x and ¢(f) = —£(f) otherwise, is an
isometry. Then, ¢(Stabgs, (L) -id) = H so this completes the proof. O

Remark 5.7 (2-torsion). If A is not 2-divisible then Sy can contain some order 2 elements
which act by inversions (i.e. fixed point free order two isometries). Suppose that A € A is
such that 2\ # X for all X' € A and let X = A/{)\), equipped with the natural action of A
and the involution (¢t + (A\))* = —t + (\). Let Sx be the resulting group and A-tree. Let
f :(0,A] = X be the constant map with image x == 0+ {\). If f = aobob ! oc then
20(b) € {)\) but since 0 < ¢(b) < A and A is not 2-divisible this can only happen if b = id. So
fe Sx and f~! is constant with image —\-z =z, so f~! = f.

The only fixed point free isometries of A-trees are inversions and hyperbolic isometries
(which have infinite order) so the only finite order elements in any Sx have order 2. Moreover
Sx can only contain inversions if A is not 2-divisible [Chi01, Lemma 3.1.2, Theorem 5.1.4].

6 Actions on products of R-trees

In this section, we present two distinct ways constructions of free transitive actions on ¢!
products of R-trees. In Subsection 6.1, we extend the ideas of Subsection 4.1 to produce
groups which act on products of R-trees with arbitrary flat stabilisers. To illustrate the
flexibility of this construction, we will prove a variant of Theorem 4.1 (Theorem 6.1). After
establishing some facts about reducible actions on products of R-trees in Subsection 6.2, we
will use the construction from Subsection 6.1 to prove the existence of a free transitive and
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irreducible action on a product of two R-trees in Subsection 6.3. In Subsection 6.4, we present
an entirely different construction which allows one to isometrically embed any BMW group
with a positive BMW presentation into a free dense action on a product of two R-trees.

6.1 Actions with prescribed flat stabilisers

Let N € {N} U {{1,...,n} : n € N}, let R := /}(N) be equipped with its natural additive
group structure, and, for each n € N, let x,, € R be the characteristic map of n.

Recall that K is the set of cardinals » such that £ < 2% and let Subp(R) be the set of
dense subgroups H < R. Let Subp(R) be the quotient of Subp(R) under linear isometries
and denote the equivalence class of each H € Subp(R) by [H].

Theorem 6.1. Let 1 : Subp(R) — K and n : N — {0,1} be arbitrary maps such that n
is non-zero and v is supported on < 2% elements of Subp(R). For each n € N such that
n(n) = 1, let T}, be the universal real tree with valence 2%° and, for all n € N such that
n(n) =0, let T, :=R. Let T := (Ty)nen- Then there exists a group G which acts freely and
transitively on the €' product (X(T,z), for some z € [ [,y Tn, such that the following holds.
For each [H] € Subp(R), let Ay be the set of G-orbits of mazimal flats F < S such that
Stabg(F') —~ F' is isomorphic to H ~ R. Then |Ag| = «([H]).

For each n € N, let X,, be a set equipped with an action of R and let Y,, := X,, 1 X¥,
where X is a copy of X,, and * : X,, — X* is a bijection. For each z* € X}, let (z})* := x,,
so *: Y, — Y, is an involution. For each z} € X* and r € R, let r -z} := (r - x,)*.

Remark 6.2. This setup is not quite analogous to that of Section 4: we have an action of
R x {(x) on Y,, rather than an action of R %, (x), where o : R — R is the order reversing
automorphism given by «a(r) = —r for all r € R.

Recall that, for each n, Zy, denotes the set of equivalence classes of realisations of se-

quences (zp)pep < Yy, where P < [0, /] is a template and £ > 0 (see Section 4.3).

Definition 6.3. Let F := {f = (fa)nen € [Len Zvi ¢ Somen L(fn) < 00}. For each n € N, let
0o (f) == £(fn). Let o(f) == ({n(f))nen € R; we call o(f) the outline of §f. Let id € F be the
unique element with outline 0.

Set f < g if and only if f, < g, for all n e N.

Definition 6.4 (Signed length, signed outline). Given n € N and f € Zy,, let P < [0,£(f)]
be a template and (zp)p,ep be a sequence with realisation f. For each p e P — {¢}, let p' € P
be the successor of p. Define:

0 (f) = E{p’ —p:peP—{{} and zp € X,,}
= (f) = Z{p’ —p:peP—{{} and xp € X}

The signed length of § is o(f) == £T(f) — £~ (f) € R.
If f = (fo)nen € F then the signed outline of f is 7(f) == (0(fn))nen € R.

Definition 6.5. e Givenfe F,let {1 = (f,)nen, where f,;1: [0,4,(f)] — X, is defined
by fo () = =7(f) - fi (€n(§) — 1) for each n.
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e Define an operation o : F x F — F as follows. Let f,g € F and, for each n, let
an : [0,0,(f) + ¢ (g)] — X, be the map given by

an(t) = {f"(t) if t € [0, €n(f)];
" 7(F) - gn(t — £,(f)) otherwise.

and let a, € Vx, be the equivalence class of a,. Define fo g := (ay)nen-

Remark 6.6. If f = (fu)nen, 8 = (8n)nen € F, then 7(fog) = 7(f) + 7(7(f) - 9) = 7(f) + 7(9),
since X,, and X are R-invariant for all n e N.

Remark 6.7. If § = (fo)nen € F then 7(71) = 7(§*) = —7(§).

Lemma 6.8. (F,0) is a cancellative monoid with identity id and with involution —1.

Proof. Given f,g,h € F, we have o((fog)obh) = of) + o(g) + o(h ) = 0(fo(goh)). Using
Remark 6.6, we have that, for each n € N and t € [0, 4,,(f) + ¢n(g) + £n(h)]:
fa(?) if t € [0, £n(F)];
((fog)eh)n(t) = 7(F) - gn(t — Lu(F)) if t € ((n(f), tn(9)];
(t(f) +7(9)) - h(t — £ (f) — £n(g)) otherwise
= (fo(goh)a(t).

Therefore ((fog)oh), = (fo(gobh)), for each n € N, which implies that (fog)oh =fo(goh).
Thus o is associative. It is clear from the definitions that id is a two-sided identity for o, so
(F, o) is a monoid.

Let f € F. Then (f71)~! = (a,)nen has outline o(f). Using Remark 6.7, we have that, for
each n € N and t € [0, £, ()],

an(t) = =r(F7) - (=7 () - £ () = () = 0))* = 7(5) - (=7(5) - fal®)) = fu(D).

Therefore (f71)~! = fand —1 : F — F is an involution. Fix f,g € F. Then (fog) ™! = (a,)nen,
where for each i, ay, : [0, 4,(f) + ¢,(g)] — X, is defined by

)Z(ﬁn(f) ln(g) — 1)

_ { )+ (7(§) gn<n<>—t>> if t € [0, £n(g));
)+ F(a(f) = (t = £a(g)))  otherwise

_ et if t € [0, £n(8));

_{T(g f(t — £,(g)) otherwise

= (g9~ Lo g 1)n, unless ¢t = £,,(g).

Therefore (fog)™' =g tof L

Finally, let f, g, h € F and suppose that fog = foh. Then o(g) = o(h) and, for each n and
for all but countably many t € [0,4,(g)] = [0,4,(h)], we have that 7(f) - gn(t) = 7(f) - hn(?)
S0 gn(t) = hn(t). Therefore g = h. It is clear that if fog = hog then f = b, so (F,<) is
cancellative. O
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Lemma 6.9. If f € F is admissible and r € R, then the equivalence class r - § of (7 - fn)nen
s admissible.

Proof. Suppose a, b, ¢ € F are such that r-f = anbob™laoc. Since X,, and X* are R-invariant for
eachn € N, we have 7(g) = 7(—7-g) for all g € F. It follows that f = —r-ao—r-bo—r-b~lo—r-c.
But (—r-b)~! = (a,)nen where, for each n e N and ¢ € [0, £,(b)],

an(t) = =7(=r-0) - (=7 by (L, (b) — t))*
= (=7(b) = 7) - by, (£n(b) — 1)
= —r-b1(t).

Thus (—r-b)~! = —r - b and, since § is admissible, this implies that b = id. O
Lemma 6.10. (F, <,id,0,—1) is an ore.

Proof. (02) holds by Lemma 6.8. Let us go through the remaining axioms.

(O1) This follows from the fact that (Vx,, <) is a median semilattice for each i (by Lemma 4.5).

(O3) Let f,g € F. It is clear from the definition of o that, if there exists h € F such
that f = go b, then g < §f. Conversely, suppose that g < f. For each n € N define
i 2 [0, €0 (F) — £n(9)] = X by h(t) == —7(g) - f(t + £n(g)). Then j=goh.

(O4) By Lemma 4.5, each (Yx,,, <) is a median semilattice. Let m, : Y5 — Yx, be the
median map from Theorem 3.5. For each f,g,h € F let m(f,g,b) := (mn(fn, On, On) )Jnen-
One can check that m(f,g,h) = fAg) v(gabh) v (§fAbh). Let r = (tn)nem € F. Then
m(; A fvr NG, TN b) = (mn(xn N f?u?n AN Bn,In A hn))neN = (?n N mn(fnaQ?u hn))nEN =
r Am(f,g,b).

(O5) Let f,g,b € F and suppose that f, g are admissible, f L h and f v h = fog. Let
Ij:={neN:l,(f) >0} and Iy == {ne N : £,(h) >0}. Then [[nly=Fandfvh=a
where a, = f, if n € I}, a, = b, if n € I and a, : {0} — X,, is any map of length
0 otherwise. Therefore, up to choosing a different representative for g, we have that
h =7(f) - g. By Remark 6.9, b is admissible.

(O6) Let f,g € F be admissible and orthogonal. Let Ij := {n € N : £,(f) > 0} and I; =
{neN:/l,(g) >0} Then [ nI; = & and §f v g = bh where b, = f, if n € Iy,
bn = gn if n € Iy and hy, : {0} — X, is any map of length 0 otherwise. It follows that
fvg=fo—7(f)-g=go—7(g)- f. By Remark 6.9, —7(f)-g and —7(g) - f are admissible.
Also, v —7(f)-g=Ftog=—7(f)-go—7(g) -f ! the fact that I; n I; = J implies
that {1 L —7(f)- g and g~ L —7(g) - . O

Definition 6.11. Let (G, x) be the group extracted from (F,o).

Remark 6.12. Any element § € F such that each f, is constant is admissible and is therefore
an element of G. Indeed if f is inadmissible then the image of some f, must contain both some
x € X, and an element in the orbit of x*, which is contained in X¥, so f, is not constant.

Let £ : F — R be the map defined by £(f) = >, . ¢n(f). Then £ is a length function. Let d
be the resulting metric on G' given by d(f, g) = £(f ! xg) for all f,g € G (see Proposition 3.29).

We will need a few lemmas to prove the following:
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Proposition 6.13. The metric space (G, d) is the £* product of |[N| complete real trees, with
respect to some basepoint.

Definition 6.14. For each ne N, let Z,, :=={fe F : f; =id Vi # n} and let ¢, : Z, — Zy,
be the bijection given by ¥, (f) = f, for all f € Z,.
Let T, == {fn € 2y, : ¥y, (fn) € G} S 2y, for each n € N.

Lemma 6.15. 1. There is an operation o and an involution —1 on 2y, such that (Zy,, <,
o,—1,id) is an ore and T, is its set of admissible elements.

2. Let (T,,*) be the group extracted from 2y, . Then ¢ is a length function on T, and, if
dy, is the metric on T, given by dp(Fn, gn) = ln(§, " *gn) for all ., gn € Ty, then (T, dy)
18 a complete real tree.

3. If | X,| = 1 then Ty, is a line and if 2 < |X,| < 280 then T, is the universal real tree
with valence 2%0.

Proof. 1. Observe that Z, is invariant under o and —1 and that id € Z,. Also if g € F
and g < f then g € Z,,. Thus it follows from Lemma 6.10 that (Z,,<,0,—1,id) is an
ore. The bijection v, then endows Zy, with the structure of an ore. By definition, the
set of admissible elements of Zy, is T,.

2. It is immediate from the definition that ¢ is a length function on Zy, . Thus, by Propo-
sition 3.29, (T),,d,) is a median space. For all §, € T}, we have f = {id} so, by
Lemma 3.31, T}, has rank 1. Given f, € T, and t € [0,4(f,)], let v(¢) := gy, where
9n = fljo,q- Then g, € Ty, and 7y : [0,£(fn)] — Ty, is a geodesic from id to f,. Therefore
T, is an R-tree by Lemma 2.11.

The argument to show that T;, is complete is very similar to the argument showing that
Tx(Y) is closed in the proof of Proposition 4.29: Suppose that (a;)eny € 1), is a Cauchy
sequence and, for each i € N, let P; < [0,4(a;)] be a template and (ap)pep, S Y, be a
sequence with realisation a;. Since T}, is downward closed, we can assume that (a;);en is
strictly increasing. Refine each P; and (ap)pep, using Lemma 4.28 so that £(a;—1), £(a;) €
P, for each i € N, where ag = id,. Then let P := Uen(P; n [€(a;—1),4(a;)]), observe
that P is a template for [0,lim; ¢(a;)], and let a € Z,, be the equivalence class of
the sequence (ap)pep. It follows from the admissibility of the a;’s that a € T;,. By
construction, (a;);ey converges to a.

3. Suppose that |X,| = 1 and let L = {f, € Zy, : f, is constant}. By Remark 6.12,
L < T, and the fact that |X,| = 1 implies that L is isometric to R. Let £ > 0, let
P < [0,¢] be a template and let f, € Zy, be the realisation of a sequence (yp)pep < Y.
Suppose the CB-rank of P is as small as possible. If f,, is not constant then there exists
p1,p2 € P — {{} such that py is the successor of p; and either y,, € X,, and y,, € X
or yp, € X, and yp, € X,,. In either case, this implies that f is inadmissible. Therefore

T, = L.
If 2 < | X,,| < 2% then it follows by the same argument as the proof of Proposition 4.31
that T, is the universal real tree with valence 2%0. O

Lemma 6.16. Consider f = (f,)nen € F. Then f is admissible if and only if f, € T,, for each
neN.
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Proof. Suppose f is admissible and there exists n € N such that f, = a, 0 b, o b, Lo, for
some @y, by, ¢, € Zy, . For each i € N — {n} define a; := b; :=id and ¢; := (—o(a,)xn) - fi- Let
a:= (a;)ien, b = (b;)ien and ¢ == (¢;)ieny. Then f=aobob laog, so b, =id.

Conversely, suppose that f,, € T}, for allm € N. Let a, b, ¢ € F be such that f = acbob™!o¢
For each n € N, f, is the equivalence class of the map f, : [0, ¢,(f)] — Y,, given by:

an(t) if t € [0,4(a,)];
() = | 7(a) - byt — €(ay)) if t € (U(an), £(an) + £(by)];
" (r(a) + 7(0)) - b1 (t — £(ay) — €(by)) if t € (U(ayn) + £(by), £(an) + 20(b,)]
7(a) - en(t — £(an) — 20(by,)) if t € (€(ay) + 20(b,),(5n)]
an(t) ift e[0,4(an)];
_ ] 7(a) - bn(t — £(an)) if t € (((an), £(an) + £(bn)];
T(a) - b*(20(b,) — t + £(ay)) if t € (L(an) + L(bn), £(an) + 26(b,,)]
7(a) - en(t — £(an) — 20(by)) if t € (L(an) + 20(by), £(5)]

\

for all ¢ € [0, K(fn)] Let 7 € R be such that 7(n) = 7(a)(n) and 7(i) = 0 if i # n. Let b, =
7-bp € 2y, and ¢, = T-c, € Zy,. Then b 1is the equivalence class of the map [0,4(b,)] — Y,
given by t — (T —7 (¢, ' (b b,)))-b* (¢(by) — ) It follows that a, 56,5 (b,) 1%, = f,. Therefore
b = id which, by Remark 6.9, implies that b,, = id. As this holds for all n € N, we have that
b = id and § is admissible. O

Proof of Proposition 6.13. Let T := (T),)nen. Lemma 6.16 implies that, as a set, G is the ¢!
product ¢!(7,id). For all f,g € G we have d(f,g) = £(F ' » g) = X>.,.cn dn(Fn, 8n). Therefore
d is precisely the ¢! metric on G = ¢}(T,id) and, by Lemma 6.15, each Tj, is a complete real
tree. 0

Definition 6.17. A standard flat in G is a maximal flat F' € G of the form
F ={fe G : {, is constant with image x,, or =) V ne N},
for some (2 )nen € [ [,,eny Xn. We denote F((xp)nen) = F.

The stabilisers of maximal flats are straightforward to describe:

Lemma 6.18. Let (p)nen € [ [,,eny Xn and let F == F((zn)nen). Then
Stabg(F) = {f€ F : 7(f) € npen Stabr(x,)} = Npen Stabr (x,).

The restriction of T to F is an isometry F' — R and the restriction 7|geap,(r) : Stabe(F)) —
NnenN Stabr(zy,) is an isomorphism.

Lemma 6.19. Let F < G be a maximal flat and let H < R be such that Stabg(F) —~ F is
isomorphic to H —~ R. If H is dense in R then F' is a translate of a standard flat.

Proof. We can replace F' by a G-translate so that id € F. Note that Stabg(F) < F in this
case. Let f € Stabg(F) be non-trivial. Up to translating F' by another element of G, we can
assume that, for all n € N, there exists a non-trivial element f/, < f, which is constant, say
with image y, € Y,,.
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Let ¢ : F — R be an isometry such that ¢(id) = 0 and, for each n € N, we have
SO_I(R “Xn) = m#np;l(id).

Let E := ¢(Stabg(F')) and note that E € [H], so in particular E € Subp(R). For each
n € N let p, : R — R be the projection defined by p,,((¢;)ien) = t,. The image p,(E) is dense
in R for each n € N. Fix n € N and let g € Stabg(F) be such that id < g, < f,. Let b := g«f,
so for all but countably many t € [0, 4(gy,)], hn(t) = gn(t) = yn and for all but countably many
t € (U(gn), €(gn) + L(fn)], hn(t) = 7(g) - yn. But h € F, g, < b and £(h,) > €n(fn) s0 fn < ba,
which implies that, for all but countably many ¢ € [£(g,), ¢(f,)], we have hy,(t) = fn(t) = Yn.
Therefore 7(g) - yn, = yn and b, is constant with image y,. It follows by induction on k € N
that the nth coordinate of g* « f is constant with image y,. It follows that the nth coordinate
of g¥ is constant with image y, for all k and therefore the nth coordinate of g—*
with image y. Thus, for all h € F, the element b,, is constant with image y,, or y. The same
argument holds for all n € N so we have shown that F' = F'((xy,)nen), where, for each n € N,
xn € X, is such that y, = z,, or y, = ). O

is constant

Proof of Theorem 6.1. Let + : Subp(R) — K,n : N — {0,1} be arbitrary maps such that 7
is non-zero. Fix m € N such that n(m) = 1. For each [H] € Subp(R), fix a representative
H < R and let By := R/H, equipped with the natural action of R by addition. Let Dy be
the disjoint union of (([H]) copies of By. If ¢ is the zero map then let X, := By, and if
t = XR then let X, :== Br 1 Byg). Otherwise, let Xy, == Upesup,®)Pu- If n€ N —{m} and
n(n) =1, then let X,, := Br 1 Bypy. If n € N and n(n) = 0, then let X,, :== Br.

Let F be the resulting ore and let G be its extracted group, equipped with the metric d
defined above. Then (G,d) is the ¢! product ¢*(7,id). By Lemma 6.15, for each n € N, the
metric space (T}, d,) is the complete universal real tree with valence 2% if n(n) = 1 and T,
is isometric to R if n(n) = 0.

Fix a subgroup H € Subp(R). Given (2y)nen € [ [ Xn, it follows from Lemma 6.18 that, if
F = F((xn)nen is the corresponding standard flat, then G- F' € Ap if and only if Stabr (z,) €
[H] and z, € Br < X, for all n # m. Two standard flats F'((zy)nen), F ((Yn)nen) whose
stabilisers act with dense orbits are in the same G-orbit if and only if x,, ¥y, are in the same
R-orbit. Therefore there are precisely «([H]) orbits of standard flats in Ag. It follows from
Lemma 6.19 that |Ag| = «([H]). O

6.2 Reducible actions

A natural question to ask when studying a group acting on a product space is whether it
is “reducible”, either in the sense that it splits non-trivially as a direct product or that a
subgroup large enough to encompass some of the geometry of the group splits non-trivially
as a direct product. Given a group G acting properly cocompactly on the product of two
locally finite simplicial trees, one says that G is reducible if a finite index subgroup of G splits
non-trivially as a direct product. Inspired by this, we consider the following notions. Fix a
group G and a space X such that X is isometric to the ¢'-product of two unbounded real
trees 11, 15.

An action of a group G on a finite rank median space X is called essential (or sometimes
minimal, see [Fi024]) if there is no proper G-invariant convex subspace of X.

Definition 6.20. A free cobounded / essential action of G on X is coboundedly / essentially
reducible if there exists a subgroup H < G which splits non-trivially as a direct product and
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such that the induced action of H on X is cobounded / essential.

Lemma 6.21. Let Ty, T be R-trees which are not isometric to R and let X = T} x T, be their
0Y product. Let H = Hy x Hoy < Isom(T1) x Isom(T») be a subgroup such that Hy, Hy # {id}
and the action of H on X is free and essential. For each i € {1,2}, let p; : H — Isom(T;)
be the canonical projection. Then, up to relabelling Hy, Ha, the following holds. Given any
point (z1,22) € X, we have Hy = Staby (T} x {22}), Ho = Staby({z1} x T») and the induced
actions Hy —~ Ty x {22}, Hy — {21} x Ty are free and essential.

It follows that, if the action of H on X is in addition cobounded / cocompact / transitive,
then the Hy —~ Ty x {22} and the Hy —~ {21} x Ty are cobounded / cocompact / transitive for
each i € {1,2}.

Proof. Since the action of H on T} x T is essential, so are the actions pi, p2. Let us show that
there is a hyperbolic element in p;(H; v Hg) for i = 1,2. Suppose to the contrary that every
element in p;(H; U Ho) fixes a point in T;. Let hy € Hy,ho € Hy and z1 € T; be a point fixed
by pi(h1). Then p;(hi) fixes p;(he)x1 and therefore fixes the segment [x1, p;(he)z1] pointwise.
Since p;(hz) is elliptic, the midpoint x9 of the (possibly degenerate) segment [z, p;(he)x1] is
fixed by pi(he) as well as p;(hy). Thus p;(h1h2) fixes a point. But by [Fio24, Theorem C(1)]
there is a hyperbolic element in p;(H) so this is a contradiction.

Now, up to relabelling H;, Ho, we can assume that there exists an element h € H; such
that pi(h) is hyperbolic. Let ¢ < T} be the axis of p;(h). Then, since Hy commutes with
h, p1(Hs) stabilises £. Moreover, if py(H2) contains a hyperbolic element pj(hg), then its
axis is also ¢ and, since H; commutes with Ha, this implies that p;(H;) also stabilises £.
Since the action of p;(H) is essential, this implies that 77 = ¢. So we can assume that
p1(Hz) contains no hyperbolic elements. Since p;(Hz) stabilises ¢, it follows that there is a
point zo € ¢ which is fixed by every element of pi(Hz). Let hy € Hy, he,hl, € Hy. Then
p1(RS)p1(hihe)zo = pi(h1)xo = pi(hiha)xg. Therefore py(Hsz) fixes the pi(H)-orbit of
pointwise and therefore its convex hull, which is the entirety of 7". Note that this also implies
that the action of p;(H;) on T3 is essential.

Since the action of H on T is free, the action of pa(Hs2) on Th must be non-trivial. If ps(H7)
contains a hyperbolic element then the above argument implies that 75 is a line. Therefore
p2(H7) does not contain a hyperbolic element, so pa2(Hz) does and the above argument implies
that the action of po(Hs) on T is essential while the action of po(H1) is trivial. The proposition
follows. O

6.3 A free transitive and irreducible action
We can now prove the following:

Corollary 6.22. Let Ty = T5 be the complete universal real tree with valence R0 There exists
a group G < Isom(Ty) x Isom(T%) which is essentially reducible but coboundedly irreducible.

Proof. Let X1 = X5 = R. Define an action of R? on X; and X as follows. If (r1,72) € R,
x1 € X and x9 € Xo, then (r1,72) -1 = ro+2x1 and (r1,72) -2 = 11 +x2. Let (F,o0,—1,<,id)
be the ore constructed in Section 6.1 using these actions and let (G, x) be the group extracted
from F. Let d be the metric on G, so that (G,d) is the ¢! product T} x Tb.

For each i € {1,2}, let p; : Isom(T}) x Isom(T5) — Isom(T;) be the canonical projection.
Suppose H < G splits non-trivially as a direct product and the induced action H —~ T} x Tb
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is essential. By Lemma 6.21, H = Hy x Hs, where Hy = ker(p2) n H and Hy = ker(py) n H.
Fix i € {1,2} and let § € T; be a constant element with image x; € X; and length ¢ > 0. If
h e H;, then o(h) = 0, so £~ (1 xh) = £ (f) = £. Therefore d;(f,h) = £(f~! xh) = £. Thus
the action of H; on T; is not cobounded, which implies that the action of H on T7 x T5 is not
cobounded.

To see that G is essentially reducible in spite of being coboundedly irreducible, let H :=
p1(ker(pz)) and Hy = po(ker(p1)). Fix ¢ € {1,2}. Let f € 71 and let (yp)pep < Yi be the
sequence whose realisation is f. For each p € P, fix y, € Y; — {y,} such that, if y, € X;
then y;, € X;, and if y, € X then y, € X;*. Let | be the realisation of (y,),ep. Then §' is
admissible, o(f ') = —o(f/) = —o(§) and § 1 A # 1 = id. Therefore f < fof ' =f+§ ' and
o(f* ) = 0. It follows that f+ 7' € H;. Therefore the action H; —~ Tj is essential, which
implies that Hy and Hs are non-trivial and the action of Hy x Hy =~ (H; x {id}, {id} x Hy) < G
on T x T5 is essential. ]

6.4 Embedding BMW groups into products of R-trees

The groups constructed in Section 6.1 contain no isometrically embedded irreducible BMW
groups:

Proposition 6.23. Let (G,*) be the group from Definition 6.11. Let H be a BMW group
with BMW presentation (A u X|R) and suppose there exists a map v : H — G which is
both a homomorphism and an isometric embedding, where H is equipped with the word metric
corresponding to A u X. Then H is reducible.

Proof. Let diy denote the word metric on H with respect to A U X.

We first show that we can assume without loss of generality that N = {1, 2}, G is isometric
to the ¢! product Ty x Ty and ¥ ({A)) < Ty x {id} and ¥((X)) < {id} x Tp. The fact that
1 is an isometric embedding implies that, for all a € A U A~ and z € X U X! we have

L(Y(a)) =L(Y(x)) =1 and £(¢(ax)) = 2. Then
2 =((y(a'x)) = €(¥(a) + L((2)) — 20(%(a) A P(2)) = 2 = 20(P(a) A (),

so ¥(a) A (z) = id. Therefore 1 (a),(z) concatenate geodesically for allae AU A~z €
XUuX~t Moreover,ifa e AVA™ ,ze XuXtanda' € AUA™!, 2’ € X UX ! are the unique
elements such that ax’ = xd’, then ¢ (a) o ¥(z') = (a) * Y (2') = P(x) x(a') = P (x) o ().
Therefore 1(a) L ¥(x). Both (A) and (X ) are Z-trees when equipped with dg, so ¥((A))
and 1 ((X)) are Z-trees. Therefore there exists n,m € N with n # m such that ¢¥((A)) < 2,
and Y((X)) € Z,,. The set £ of elements f € F such that f; = id for all i € N such that
i ¢ {n,m} is invariant under o and —1, contains id and, if f, g € F such that f € £ and g <,
then g € £. Thus (F,0,—1,id, <) is an ore and its extracted group contains (H).

Thus, we assume from now on that N = {1,2}, G is isometric to the ¢! product T3 x Ty
and ((A)) € Th x {id} and P((X)) < {id} x T>.

For all g € (A), f e (X), let g1 € T1,f2 € T» be such that (g) = (g1,id), ¥ (f) = (id, f2).
Define

V= u{yeY::ai(t) =y for some a € AU A™! and uncountably many ¢ € [0, £(a1)]}
Vx = u{y € Ya : 25(t) = y for some z € X U X! and uncountably many ¢ € [0, £(x2)]}.
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Let n := max{(2|A4])!, (2|X|)!}. If g € (A) and x € X U X!, then there exists f € (A)
such that g"x = xf. Therefore

(o7, 7(¥(9")) - 12) = (7($(2)) - f1, 12)

Thus 7(¢¥(g")) - 12 = 12 for all g € (A) and 2 € X U X~!. By a symmetric argument,
7(¥(g") -ag =ag forallge (X)and ae Au A~L.

Consider the actions ag : (A) — Sym(Y3) and ax : (X ) — Sym(Y7) defined by aa(g)(y2) =
r(@(9)) - 12 and ax(£)(yn) = T(B(f)) -1 for all g € (A, f € (Xy,y1 € Vi and g € Y. Let
W4 € Y7 be the (X )-orbit of V4 and let Wx be the (A)-orbit of Vx. Let 54 be the restric-
tion of a4 to Wx and let Sx be the restriction of aq4 to Wx. Then, by the above argument,
every (A)-orbit in Wx has cardinality dividing n and every (X )-orbit in W4 has cardinality
dividing n. Since A and X are finite, there are finitely many subgroups of {(A) with index
at most n and finitely many subgroups of (X) with index at most n. Let H; < (A) be the
intersection of all subgroups of (A) with index at most n and let Hyo < (X) be the intersection
of all subgroups of (X) with index at most n. Then H; < ker(f84) and Hs < ker(f8x) and H;
has finite index in (A) and Hs has finite index in (X).

Let H' := (Hy,Hy) < H. Then H' is a finite index subgroup of H. Let h € H; and
f € (X). Let us show by induction on the word length of f that Sa(h) o fo ~ fo. If
f e X U X! then this follows from the fact that h € ker(32), since fa(t) € Wx for all
but countably many t € [0, £(f2)]. Let m > 1 and suppose the word length of f is m. Then
f = f'z where f’ € (X) has word length m—1 and z € X U X ~!. By the induction hypothesis,

Y(hf") = (h1,7(Y(R)) - f4) = (h1,§5) = L(f") » (=7 (¥ (f")) - h1,1d). Moreover, for all w e Wy,

we have
T((=7((f)  b1,id) - w = 7((f' 7 hf)) - w = w.
Therefore:
(b1, 7(b1) - f2) = ¥(hf)
= ¢(hf'x)
= (f") * (=7 (f") - b1, T((=7 () - b1,id)) - x2)
= () * (=7((f) - b1,x2)
= (b1, f2),
so Ba(h) o fo ~ fa. A symmetric argument shows that Sx(h) o g; ~ g1 for all h € Hy and
g € (A). Tt follows that H; and Hs commute, so H =~ Hy x Hs. O

I do not know whether it is possible to isometrically embed an irreducible BMW group
into a group acting freely and transitively on a product of two (complete) real trees (see
Question 1.2). If one requests only that G acts on the product with dense orbits, the follow-
ing theorem shows that this can be done for BMW groups equipped with a positive BMW
presentation. Note that the group defined by Wise in [Wis07, Example 4.1] has a positive
BMW presentation and is irreducible by Corollary 6.8 in loc. sit.

Theorem 6.24. Let H be a BMW group with a positive BMW presentation (AU X | R) and
let Cay(H, A v X) be the corresponding Cayley graph. There exists a group G such that the
following hold:

47



i. there is an injective homomorphism H — G;
ii. G acts freely with dense orbits on the €' product of two R-trees Ty x Th;

i11. there is an isometric embedding ¢ : Cay(H,A U X) — Ty x Ty, which is equivariant
relative to H — G.

If H is irreducible, then for any subgroup L < G which splits non-trivially as a direct product,
the induced action of L on T} x Ty does not have dense orbits.

Proof. Let R be closure of R under cyclic permutations. Let I be the Cayley complex of H
with respect to the presentation (A L X | R) and recall that I' = T'y x I'x is the product
of the Cayley graph I'y of (A) with the Cayley graph I'x of (X). Let w4 : I' - I'4 and
mx : I' = I'x be the projection maps and let id4,id x be the identity in (A),{X) respectively.
The action of H on I' does not permute the factors so there are projection actions H — I'4
and H —~ T'y defined (on the vertex sets) by

h-ga=ma(h(ga,idx)), h-gx =7x(h(ida,gx)) Vhe H,gae{A) gx e{X).

Definition 6.25. The induced action of (A) on I'x permutes the set X and can be read off
the presentation of H: for all a € A and x € X, there exist a unique ¢’ € A and a unique
2’ € X such that aza’ '2/"' € R, and we then have a -z = 2’. Similarly the action of (X) on
I' 4 permutes the set A and can be read off the presentation: given a € A, x € X there exist
unique a’ € A, 2’ € X such that a’2’a "2~ ' e Rand z-a = d'.

For each a € A and z € X let 0, € Sym(X) and o, € Sym(A) denote the resulting
permutations.

Definition 6.26. e Let Y4 be a graph with vertex set A such that, for each ai,as € A
with a; # ag, there is a directed edge e(ay, az) from a; to ay of length 1. Similarly, let
Yx be a graph with vertex set X such that, for each x1,x2 € X with 1 # x9, there is
a directed edge e(x1,x2) from z1 to o of length 1. Let d denote the resulting metrics
on Y, and Yyx.

e For each n e N, let Y4(n) € Y4, Yx(n) € Yx be the subsets consisting of points whose
distance to a vertex is a multiple of 1/n. For all distinct aq1,a2 € A, x1,22 € X let
en(ai,az) :==Ya(n) ne(ar,az) and e,(x1,z2) == Yx(n) N e(z1, x2).

Let n € N. We will construct a BMW group G, with generating set Y4(n) u Yx(n). We
first define actions of the free groups (Y4(n)) and (Yx(n)) on Yx(n) and Y4(n) respectively.

Recall that a directed cycle in a directed graph is a cycle with edges (eg,...,ex_1) such
that, for each i € Z/kZ, the edge e; is directed from e;—1 M e; to e; N e;11. Observe that,
for any sequence of vertices C' = (vg,...,vx—1) in Y4 (resp. in Yx) with k& > 2, the cycle
(e(vo,v1),e(vi,v2),...,e(vg—1,vx)) is the unique directed cycle in Y, (resp. Yx) with vertices
C. In both Y4(n) and Yx(n), define a sequence C(n) as follows. For each i € {1,...,k — 1}
and j € {0,...,n — 1}, let y; ; € e(vi,vi+1) be the point such that d(v;,y;;) = j/n. Let
C(n) = (y;;:1€{0,...,k—1},7€{0,...,n — 1}), ordered lexicographically. Less formally,
C'(n) is the sequence of points in Y4(n) (resp. Yx(n)) that one encounters if one starts at vy
and follows the directed cycle in Y with vertices C.

Given y4 € Y4(n), there is a unique a € A such that y4 € e(b,a) — {b} for some b € A.
Define ¢, (ya) € Sym(Yx(n)) as follows. Let Cj...Cy be the cyclic decomposition of og;
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enlya) Hyx)

Yya on(yx) " (ya)

id Yyx

Figure 2: The relation r,(y4,yx) in Iy, where y4 € Ya(n) and yx € Yx(n).

so, for each i, C; = (zo,...,xm) for some m > 0 and g, ...,Tm-1 € X and o4(x;j) = xj41
for each j € Z/(m + 1)Z. Let ©n(ya) be the symmetry of Y4(n) with cyclic decomposition
Ci(n)...Ck(n). This defines a homomorphism ¢, : (Y4(n)) — Sym(Yx(n)). Note that, if
Yx(n) is equipped with the metric induced by Yx, the action ¢,, is not by isometries.

Similarly, if yx € Yx(n), let z € X be the unique vertex of Yx such that yx € e(z,z) —
{z} for some z € X and let C...C} be the cyclic decomposition of o,. Define ¢, (yx) €
Sym(Y4(n)) to be the symmetry of Y4(n) with cyclic decomposition Cy(n)...Ck(n). This
determines a homomorphism ¢, : (Yx(n)) — Sym(Ya(n)).

Definition 6.27. For each y4 € Y4(n),yx € Yx(n), let

(YA, yx) = ya en(ya) " (yx) (en(yx) " (ya)) " yx' € Ya(n) v Yx(n))

and let R(n) = {r,(ya,yx) : ya € Ya(n), yx € Yx(n)}. Let G, be the group with presen-
tation (Ya(n) u Yx(n) | R(n)) and let I';, be the Cayley complex of G,, with respect to this
presentation. The image of a relation r(y4,yx) in 'y, is illustrated in Figure 2.

Claim 1. For each n e N, (Ya(n) v Yx(n) | R(n)) is a BMW presentation.

Proof. Let zy € Ya(n) uYa(n)™!, 2x € Yx(n) uYx(n)~! and let y4 € Ya(n) and yx € Yx(n)
be such that either z4 = y4 or z4 = yATl, and zx = yx or zx = y)}l. Then 7, (ya,yx) is the
unique element of R(n) of the form zazx 2,2y or 24z za2zx or z;lz’Xz;‘z;(l or z;}z;(lez}(
for some z%eYAuYA_l and zg(eYXuY)gl. [ |

Let d,, be the path metric on the 1-skeleton Fg), where each edge is assigned a length of
1/n.

Equip N with the partial order n < m if and only if n divides m, and note that (N, <) is
a net. If m = kn, where k, m,n € N, define ¢, ,, : G, = Gy, as follows. If y € Ya(n) v Yx(n),
set Yn,m(y) = y*. If ya € Ya(n),yx € Yx(n), then

U (o (Y4, yx)) = ¥ en(a) " (Ux)* enlyx)  (ya) * v

=4 em(a) " ()" em(yx) () 7" yx"
Let a € A and x € X be such that y4 € e(d/,a) — {d'} and yx € e(2’,x) — {2’} for some
a’ € A2’ € X. Note that, since y4 € Ya(n), for any i € {0,...,k — 1} and for all zx € Yx(m)
we have ¢, (2x)%(ya) € e(a’,a) — {a’} for some a’ € A. Therefore p;(pm(2x) (ya)) = ©j(ya)
for any j € N. Similarly, ¢;(pm(24) (yx)) = ¢;(yz) for any z4 € Ya(m),i € {0,...,k — 1}
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YAN yan YA 2 PYA k—1 4

YAAX ya1 1 va2tyak—1 4 YAk

YAN yan YA 2 PYA k—1 A YA

Figure 3: The ), m-image of 7,(ya,yx), where ya € Ya(n) and yx € Yx(n). For each

ie{l,...,k}, we denote ya; = ©m(yx) "(ya) and yx,; = ©m(ya) " (yx).

and j € N. It follows that 1y, ., (r(ya,yx)) = id (see Figure 3). Therefore v, ,, extends a
homomorphism ¥y, ,, : Gy, — Gy

By construction, ., is an isometric embedding when restricted to balls of radius 1 in
Gp. It extends naturally to a local isometry t,, ,, : 'y — Iy, where the image 1, ,, (') is
the convex hull of v, ,,(Gy). Since both I, and @njm(lﬂn) are simply connected, this implies
that v, n, is an isometric embedding.

Definition 6.28. Let G be the direct union of the system (G, n m )

Since each v, ,, is an isometric embedding, there is a metric d : G? — G such that the
restriction of d to G2 is d,, for any n € N. Let X be the completion of (G,d).

For each n € N, let ¢, : (Ya(n) u Yx(n)) — G be the canonical embedding. It is a
homomorphism and an isometric embedding.

Claim 2. X is the (' product of two R trees Ta x Tx.

Proof. Let W4 = UpenYa(n) and Wx = UpenYx(n). Let Sy := (Wy) < G and Sx =
Wx) < G. We will show that S4 and Sx are Q-trees.

Let f,g,h € Sa. Then there exists n € N such that f,g,h € (Ya(n)). Note that d(f,g) =
dn(f,9) € Z/n < Q so S4 is indeed a Q-metric space. Since ((Ya(n)),d,) is a Z/n-tree, there
exists a median p € (Y4(n)) for d,, and therefore for d. For all m > n, the restriction of ¢y, ,, to
(Y4(n)) is an isometric embedding into ((Y4(m), dy,). It follows that p is the unique median
of {f,g,h} in Sy, so S4 is median, and that Sy has rank 1. Let n € N and let y4 € Ya(n).
For each p/q € Q n (0,1/n] such that p and ¢ are coprime, y(t) := ¥4(y%). Let v(0) = id.
Then 7 is a Q-geodesic in G from id to ¥, (y4). It follows that G is a geodesic Q-metric space.
By Lemma 2.11, this implies that S4 is Q-tree. A symmetric argument shows that Sx is a
Q-tree.
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For each n € N, Proposition 2.14 implies that ((Ya(n) u Yx(n)),d,) is, as a Z/n-metric
space, the ¢! product of (Y4(n)) and (Yx(n)). It follows that G is the ¢!-product of S4 and
Sx as a Q-metric space. Let T4 be the completion of S4 and let Tx be the completion of
Sx. Then X is the ¢! product T4 x Tx. |

Since each element of G has positive translation length in G, the action of G on its
completion X is free. This proves Item ii of the theorem. The injection ) verifies Item i, and
naturally extends to an H-equivariant isometric embedding v : Cay(H, A v X) — Ty x Tx,
verifying Item iii. The last part of the theorem is proved in the following claim:

Claim 3. If G contains a subgroup K < G which splits non-trivially as a direct product such
that the induced action K —~ T4 x T'x has dense orbits, then H is reducible.

Proof. Note that G < Isom(T4) x Isom(Tx). Let pa : G — Isom(T4),px : G — Isom(Tx) be
the canonical projections. Also recall that (G,d) is isomorphic to the ¢! product S4 x Sx.
Let pga : G — Sa,px : G — Sx be the canonical projections.

By Lemma 6.21, K ~ K4 x Kx, where K4 < ker(px) < Sa, Kx < ker(pa) < Sx, and
K4 is dense in T4, and Kx is dense in Tx.

Let ' 4, T'x be the Cayley graphs of the free groups (A), (X ) with respect to the generating
sets A, X. Let g4 : H — Isom(T'4) and gx : H — Isom(I'x) be the canonical projections. We
will show that g4(H) and ¢x(H) are discrete with respect to the compact open topology on
Isom(I"4) and Isom(I"x). By [BMO0O, Proposition 1.2], this implies that H is reducible.

Let h € H be such that gx(h) fixes the ball of radius 1 in I'x around idy pointwise. In
particular, gx(h) fixes idx, so h € (A). Moreover h-x = x for all z € X. Then, for all
n € N, the element ¢, (¢1,(h)) € Sym(Yx(n)) is the identity map. Let f := 1;(h). Then
px(f)(g) = g for all g € Sx with d(g,idx) < 1.

Let n € N and suppose that px(f)(g) = ¢ for all g € Sx such that d(g,idx) < n. Let
g € Sx be such that d(g,idx) < n + 1. There exists kx € Kx such that d(kx,idx) < n and
d(kx,gx) < 1. Then px(f)(kx) = kx, which, since pa(kx)(f) = f, implies that f and kx
commute. Let ¢’ = k;(lg, so d(idy, g) < 1. Then

px()(9) = px(fkxd') = px(kx fg') = kxpx(f)(g') = kxg' = g.

It follows by induction on n that px (f) is the trivial map on Sx. Since 9 is H-equivariant, this
implies in particular that gx (h) is the identity map on I'y. Therefore the identity is isolated

in gx(H), so gx(H) is discrete. A symmetric argument shows that g4(H) is discrete. [ |
O
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