
A guide to constructing free

transitive actions on median spaces

Pénélope Azuelos

July 29, 2025

Abstract

We construct large families of groups admitting free transitive actions on median
spaces. In particular, we construct groups which act freely and transitively on the complete
universal real tree with continuum valence such that any subgroup of the additive reals is
realised as the stabiliser of an axis. We prove a more precise version of this, which implies

that there are 22
ℵ0

pairwise non-isomorphic groups which admit a free transitive action
on this real tree. We also construct free transitive actions on products of complete real
trees such that any subgroup of Rn is realised as the stabiliser of a maximal flat, and an
irreducible action on the product of two complete real trees.

To construct each of these groups, we introduce the notion of an ore: a set equipped
with the structure of a meet semilattice and a cancellative monoid with involution, which
verifies some additional axioms. We show that one can extract a group from an ore and
equip this group with a left-invariant median structure.
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1 Introduction

Median spaces are metric spaces which simultaneously generalise both R-trees and CAT(0)
cube complexes. We will give a number of constructions of free transitive actions on connected
median spaces, revealing a great deal of variety among the groups which admit these actions.
The study of groups acting freely and transitively on connected metric spaces is in part
inspired by the highly fruitful idea that finitely generated groups can be studied via their
actions on metric spaces, the most revealing of actions being free (or proper) and transitive
(or cocompact). One of the most natural ways to obtain a transitive action on a median
space is to take a finitely generated group G which is coarsely median (see [Bow13]) with
respect to some (equivalently any) proper word metric and to consider the action of an
ultraproduct G˚ of G on an asymptotic cone of G (using the same ultrafilter). This space is
bi-Lipschitz equivalent to a median space on which G˚ acts by isometries [Bow18, Zei16]. It is
straightforward to see that such an action is always transitive, however it is never free. On the
other hand, Casals-Ruiz, Hagen and Kazachkov have shown that many of these asymptotic
cones can be equipped with free transitive actions [CRHK24]; their construction involves a
precise understanding of the combinatorial structure of the space in question, independently
of the fact it arises as an asymptotic cone. In the present paper, we will mostly restrict
ourselves to actions on real trees and their products, but, even in this more restricted setting,
the actions we construct exhibit entirely new behaviours.

R-trees. An R-tree is a geodesic metric space where any pair of points is connected by
exactly one simple path, or equivalently, it is a connected median space of rank 1. Finitely
generated groups which act on R-trees have been extensively studied, and this study has
been extremely consequential, particularly for our understanding of hyperbolic groups (see
e.g. [BF95, MS84, RS94, Sel95, Sel09]). The class of finitely generated groups which admit
free actions on R-trees includes free groups (which act on their Cayley graphs), free abelian
groups (which embed as subgroups of R) and, as was shown by Morgan–Shalen in [MS91], the
fundamental group of any closed surface Σ, unless Σ is non-orientable with Euler characteristic
ě ´1. One can show that any free product of groups which admit free actions on R-trees
admits a free action on an R-tree. Conversely, Rips’ theorem [GLP94] states that any finitely
generated group which admits a free action on an R-tree splits as a free product of surface
and free abelian groups. Dunwoody [Dun97] and Zastrow [Zas98] produced examples which
show that this characterisation fails when one drops the finite generation assumption.

More recently, Berestovkĭı–Plaut [BP10] produced a large family of groups which act freely
on real trees: they show that every length space X is the quotient of a real tree TX by the free
action of some group GX , where the group GX can be interpreted as a “refined fundamental
group” of X. Every finitely generated subgroup of GX is free, but they produce examples
of spaces X where GX does not split as a free product of free and surface groups. Their
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construction can also be used to construct a free transitive action on the tree TX , provided
the space X is itself equipped with a free transitive action (see the proof of Theorem 38.24
on page 211 of [CRHK24]).

Recall that, for any cardinal κ which is not both finite and odd, there is exactly one group
which acts freely, transitively and without edge inversions on the regular simplicial tree with
valence κ: namely the free group of rank κ{2. Given an R-tree T and a point x P T , the set
of directions of T at x is the set of connected components of T ´ txu. The valence of T at
x is the cardinality of the set of directions at x. Given a cardinal κ ě 2, there is a unique
complete R-tree up to isometry such that each point has valence κ [MNO92, Nik89], called
the universal real tree with valence κ. Unlike in the discrete case, this tree does not always
admit a unique group structure. This was proven by Casals-Ruiz, Hagen and Kazachkov in
[CRHK24, Section 38], where they construct, for each 2 ď κ ď 2ℵ0 , a group G which acts
freely and transitively on the universal real tree T with valence 2ℵ0 such that there are exactly
κ conjugacy classes of maximal abelian subgroups H ď G such that H – R. More precisely,
there are exactly κ G-orbits of lines L Ď T such that the stabiliser StabGpLq acts transitively
on L. They also show that any line in T either has transitive, cyclic or trivial stabiliser
(see Proposition 38.28 in loc. sit.). This leads to the natural question of whether any other
subgroups of R can be realised as the stabiliser of a line in a free transitive action on a real
tree. Our first result provides a positive answer to this question.

Let SubNCpRq denote the set of non-cyclic subgroups of R and let K denote the set of
cardinals κ such that κ ď 2ℵ0 .

Theorem A (Theorem 4.1). Let ι : SubNCpRq Ñ K be any map which is supported on ď 2ℵ0

elements of SubNCpRq. Then there exists a group G and a free transitive action of G on the
universal real tree T with valence 2ℵ0 such that the following holds. For each H ď R, let AH

be the set of orbits G ¨L such that L Ď T is a line and the induced action of StabGpLq on L is
isomorphic to the action of H on R by translations. If H ď R is non-cyclic then |AH | “ ιpHq.

An easy consequence of this is that the set of groups which admit free transitive actions
on T is not only infinite, it is as large as possible. Recall that T is the asymptotic cone of
any non-elementary hyperbolic group [DP01] and, since these are countable, it follows that

the cardinality of T is 2ℵ0 . Thus there are at most 22
ℵ0 possible group operations on T .

Corollary B. Let T be the universal real tree with valence 2ℵ0. Then there are 22
ℵ0 pairwise

non-isomorphic groups which admit a free transitive action on T .

Proof. Let A be a set of pairwise non-isomorphic elements of SubNCpRq with cardinality1

|A| “ 22
ℵ0 , and for each H P A let χH : SubNCpRq Ñ K be the characteristic map of H.

Let GH be a group satisfying the conclusion of Theorem A with ι “ χH . Recall that every
maximal abelian subgroup of GH is the stabiliser of a line in T . Therefore, for each H,K P A
with H fl K, we have GH fl GK since GH has a maximal abelian subgroup isomorphic to
H and GK does not. Conversely, if G is a group acting freely and transitively on T then
|G| “ |T | “ 2ℵ0 and there are at most 22

ℵ0 groups with that cardinality.

The construction of the group G in Theorem A is inspired by the constructions of universal
real trees as function spaces given by Dyubina–Polterovich in [DP01]. In the case of infinite

1One way of constructing such a family of groups is given by Yves Cornulier here: https://mathoverflow.
net/questions/264438/number-of-torsion-free-abelian-groups.
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cardinals, their construction can be described as follows. Fix an infinite cardinal µ and a set
Cµ of cardinality µ. The universal real tree Aµ is given as the set of maps f : r0, ℓf q Ñ Cµ

where ℓf ě 0 and f is piecewise constant from the right, meaning that for all t P r0, ℓf q

there exists ε ą 0 such that f |rt,t`εs is constant. If ℓf “ 0 then f is the empty map.
Given f, g P Aµ, the distance from f to g is defined by dpf, gq :“ pℓf ´ sq ` pℓg ´ sq, where
s :“ suptt P r0,mintℓf , ℓguq : f |r0,ts “ g|r0,tsu. The fact that the elements of Aµ are piecewise
constant from the right ensures that the set of directions at any point of Aµ is in bijection
with Cµ.

The underlying idea for the construction of the group G is to construct a function space
T as above but where the set of “directions” is equipped with an involution and an action of
R which are used to define a group operation on the space, in such a way that the choice of
R-action determines the possible axis stabilisers of T . The elements of Aµ in the Dyubina–
Polterovich construction are not well suited to this, as the piecewise constant from the right
condition, and the fact that the domains are half open intervals, make it difficult to define
appropriate inverses of elements.

Instead, the group G will be a subgroup of a group TX whose construction we now briefly
outline. We start with a set X equipped with an action of IsompRq “ R ¸ x˚y, where
x˚y – Z{2Z. Two maps f, g : r0, ℓs Ñ X are said to be equivalent if they agree on all
but countably many elements in r0, ℓs. The elements of TX are equivalence classes of maps
f : r0, ℓf s Ñ X satisfying an admissibility criterion. We will define a group operation ‹ on
TX , where the product f ‹ g of two elements f, g P TX depends on ℓf . The metric on TX
can be defined similarly to the metric on Aµ to make TX into an R-tree. Given x P X such
that x˚ R R ¨ x, there is a line in TX given by Lx :“ tf P TX : fptq “ x @t or fptq “ x˚ @tu
which has stabiliser isomorphic to StabRpxq. Because we allow so many maps in TX , the set
of directions at each point of TX is much bigger than X itself; it turns out that the valence
of TX is ě 22

ℵ0 as long as |X| ě 2. Moreover, it may not be possible to control the exact
set of orbits of axes in TX with non-cyclic stabilisers (see Remark 4.17). The right object to
consider is instead the smallest subgroup G ď TX which is closed with respect to the topology
induced by the metric on TX , and which contains all the axes Lx. The construction of TX
is given in Section 4.1 using tools developed in Section 3 (we will address these later in this
introduction). We will prove in Section 4.3 that G is indeed the universal complete real tree
with valence 2ℵ0 as long as 2 ď |X| ď 2ℵ0 and, in Section 4.4, we will prove Theorem A using
this construction.

We can also use the above ideas to construct groups which act freely and transitively on
real trees with valence 3 ď κ ă 2ℵ0 but these only exist for incomplete real trees:

Theorem C (Theorem 4.2). Let 3 ď κ ă 2ℵ0 be a cardinal. There are no free transitive
actions on the complete universal R-tree Tκ with valence κ.

Let κ ě 3 be any cardinal. There exists a free transitive action G ñ Sκ, where G is a
group and Sκ is an incomplete R-tree with valence κ, if an only if κ is either infinite or even.
If κ is finite and even, then this action is unique.

In [CM12], Chiswell–Müller show that the free product of κ copies of R acts freely and
transitively on an R-tree. Although it is not explicitly mentioned, it is not hard to see from
their proof that this real tree is incomplete and has valence 2κ. In fact, the action we construct
is isometric to theirs (see Remark 4.35). If one applies their construction to the free product
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of 2ℵ0 copies of R, one obtains the free transitive action on Uryson’s R-tree constructed by
Berestovskĭı [Ber89, Ber19].

Another interesting source of free transitive actions on incomplete R-trees is the following
result of Chiswell–Müller [CM10, Theorem 5.4]: Any free action on an R-tree is contained
in a free transitive action on an R-tree. More precisely, given a free action G ñ T , where
T is an R-tree, there exists a group pG and an R-tree pT , such that G ď pG and there is a
G-equivariant isometric embedding T ãÑ pT . If one starts with an action G ñ T which is not
already transitive then the tree pT will not be complete (see Proposition 6.2 in loc. sit.).

In Section 5, we construct free transitive actions on Λ-trees for any totally ordered abelian
group Λ (see Definition 2.8). The study of group actions on Λ-trees was initiated by Morgan–
Shalen in [MS84]. Due to the relationship between free actions on Λ-trees and algorithmic
properties of groups, there has been significant interest in producing such actions. Free
actions of Lyndon’s free Zrts-group FZrts (and other groups of infinite words over discretely
ordered groups) were constructed in [MRS05]. In [KMS14], the authors give a natural folding
construction associating free actions on trees to groups of infinite words, and establish a
universal embedding property for the resulting trees.

Actions on products of trees. Let T1, T2 be regular, locally finite simplicial trees with
even degrees d1, d2 ě 4. Unlike the case with a single factor, there are several groups which
act freely, transitively and without edge inversions on the vertex set of the product T1 ˆ

T2. The groups which admit these actions – called BMW groups, after Burger, Moses and
Wise – can have extremely varied structures, ranging from direct products of free groups
to virtually simple groups. Indeed, a great deal of the interest in these groups stems from
the discoveries by the aforementioned authors of classes of examples answering longstanding
questions in geometric group theory. Wise used them to construct the first example of a group
acting properly discontinuously and cocompactly on a CAT(0) space which is not residually
finite [Wis96] (see also [Wis07]) and Burger–Moses used them to construct finitely presented
simple groups of the form Fn ˚E Fm where Fn, Fm, E are free groups with finite rank and the
embedding of E in both Fn and Fm has finite index [BM00]. A survey on this topic can be
found in [Cap19].

Before one can fathom the existence of a simple group acting freely and cocompactly on a
product of trees, one must first come to terms with the existence of a group which acts freely
and cocompactly on such a space without virtually splitting as a direct product. A BMW
group G is called reducible if it contains a finite index subgroup which splits non-trivially
as a direct product and irreducible otherwise. Examples of irreducible BMW groups include
those constructed by Burger–Moses and Wise, as well as some constructed in [Rad20, Rat04,
Run18, SV17].

Using the construction from Section 6.1, we can show that this phenomenon persists in
the continuous setting:

Corollary D (Corollary 6.22). There exists a group G which admits a free transitive action
by isometries on a product T1 ˆT2 of two complete R-trees with valence 2ℵ0 such that, for any
subgroup H ď G which splits non-trivially as a direct product, the induced action H ñ T1ˆT2
is not cobounded.

Although the group G constructed in the proof or the above corollary does not contain
any subgroups which split as direct products and act coboundedly on T1 ˆ T2, it does have
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some rather large proper normal subgroups (see the proof of Corollary 6.22). Therefore the
following question remains mysterious:

Question 1.1. Does there exist a simple group which acts freely and coboundedly on a product
of (complete) R-trees?

By Proposition 6.23, the group constructed to prove Corollary D does not contain any
isometrically embedded irreducible BMW groups. By taking direct unions of certain BMW
groups, we can construct groups which act on products of trees with dense orbits and contain
isometrically embedded irreducible BMW groups. See Section 2.4 for the definition of a
positive BMW presentation. The group from [Wis07, Example 4.1] is an example of an
irreducible BMW group with such a presentation.

Theorem E (Theorem 6.24). Let H be a BMW group with a positive BMW presentation
xAYX | Ry and let CaypH,AYXq be the corresponding Cayley graph. There exists a group
G such that the following hold:

i. there is an injective homomorphism H ãÑ G;

ii. G acts freely with dense orbits on the ℓ1 product of two R-trees T1 ˆ T2;

iii. there is an isometric embedding ψ : CaypH,A Y Xq ãÑ T1 ˆ T2 which is equivariant
relative to H ãÑ G.

If H is irreducible, then for any subgroup L ď G which splits non-trivially as a direct product,
the induced action of L on T1 ˆ T2 does not have dense orbits.

This leads to the following question:

Question 1.2. For which BMW groups H, with BMW presentation xA Y X|Ry, does there
exist a group G which acts freely and transitively on a product of complete R-trees T1 ˆ T2
such that H ď G and there is an equivariant isometric embedding CaypH,AYXq ãÑ T1 ˆT2?

The construction used to produce the group in Corollary D can in fact be used to con-
struct free transitive actions on products of arbitrarily many real trees. The flexibility of this
construction is illustrated in the theorem below.

Let N P tNu Y tt1, . . . , nu : n P Nu and let R :“ ℓ1pNq be equipped with its natural
additive group structure and the ℓ1 norm. Let SubDpRq denote the set of dense subgroups of
R and let SubDpRq be the quotient of SubDpRq under linear isometries of R. Let T be the
ℓ1 product of |N | copies of the complete universal real tree T with valence 2ℵ0 .

Theorem F (Theorem 6.1). Let ι : SubDpRq Ñ K be any map which is supported on ď 2ℵ0

elements of SubDpRq. Then there exists a group G, which acts freely and transitively on T,
such that: for each rHs P SubDpRq, the cardinality of the set of orbits of maximal flats F Ď T
such that StabGpF q ñ F is isomorphic to H ñ R is ιprHsq.

A strategy for constructing free transitive actions on median spaces. Each of the
existence results mentioned so far involves a different construction of a group acting freely and
transitively (or with dense orbits) on a median space. But, in every case involving a transitive
action, the proof that what we obtain from the construction really is a group with the required
properties follows a similar strategy. Namely, we first define a set Y which we equip with a
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binary operation ˝, an involution ´1 and a relation ĺ, and we distinguish an element id P Y .
We then show that pY, ˝q is a cancellative monoid with identity id and involution ´1 and
pY,ĺq is a partially ordered set with minimal element id which satisfies some extra conditions
making it a median semi-lattice (see Definition 3.4). These statements, together with a few
more technical properties, imply that pY,ĺ, ˝, id,´1q is an algebraic object called an ore2

(Definition 3.8). This object admits a canonical subset G Ď Y of admissible elements on
which we define a new binary operation ‹. We then apply the following result from Section 3:

Theorem G (Theorem 3.23, Proposition 3.29). Let pY,ĺ, ˝, id,´1q be an ore and G Ď Y be
the set of admissible elements of Y . Then pG, ‹q is a group.

If Λ is a totally ordered abelian group and ℓ : Y Ñ Λ is a length function, define d :
G ˆ G Ñ Λ by dpf, gq “ ℓpf´1 ‹ gq. Then d is a Λ-metric which is invariant under left
multiplication by G and the resulting Λ-metric space pG, dq is median.

In the above theorem a length function is defined as a map ℓ : Y Ñ Λ such that, for all
g P Y , we have ℓpgq “ ℓpg´1q ě 0 with equality if and only if g “ id, and ℓpg ˝hq “ ℓpgq ` ℓphq

for all f, g P Y (Definition 3.28).

Remark 1.3. All of the actions we construct in this paper are on spaces which are not locally
compact. It turns out this is to be expected when looking for interesting free transitive actions
on median spaces. Indeed, Messaci proved in [Mes24] that any finite rank locally compact
connected median space which admits a transitive action is isometric to Rn equipped with its
ℓ1 metric, for some n.
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carried out. This work was funded by a University of Bristol PhD scholarship and a grant
from the Académie Systèmes Complexes of the Université Côte d’Azur.

2 Preliminaries

2.1 Λ-metrics

We will at times need to work with generalised metric spaces, where metrics take values in
some totally ordered abelian group. We record some definitions and facts about these spaces
here; for more details the reader can refer to [Chi01, GKMS15].

Let Λ be an abelian group, which we denote additively. We say that Λ is totally ordered
if there is a total order ď on Λ which is Λ-invariant (i.e. x ď y ô λ ` x ď λ ` y for all
λ, x, y P Λ). It follows immediately from the definition that such a group is torsion-free. Fix a
totally ordered abelian group Λ for the rest of this section. Note that we can define intervals
rλ1, λ2s, pλ1, λ2q, pλ1, λ2s, rλ1, λ2q in exactly the same way as they are defined in R.

2This is unrelated to the work of Øystein Ore. The name is in reference to naturally occurring ores from
which one extracts metals.
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Definition 2.1. Let X be a set. A Λ-metric on X is a map d : X ˆX Ñ Λ such that, for all
x, y, z P X,

• dpx, yq ě 0, with equality if and only if x “ y;

• dpx, yq “ dpy, xq;

• dpx, yq ď dpx, zq ` dpz, yq.

The pair pX, dq is called a Λ-metric space.

Example 2.2. • The group Λ is itself a Λ-metric space, with Λ-metric given by dpx, yq “

|x´ y| “ x´ y if x ě y and y ´ x otherwise, for all x, y P Λ.

• A metric space in the usual sense is an R-metric space.

• The 0-skeleton of a connected graph equipped with the path metric is a Z-metric space.

• If X is a metric space, ω is an ultrafilter on N and Xω,Rω are the ultrapowers of X,R
with respect to ω, then Rω has a natural group structure and order making it a totally
ordered abelian group and Xω is an Rω-metric space.

If Λ “ R, we will usually write metric rather than R-metric.

Definition 2.3. Given two Λ-metric spaces pX, dXq, pY, dY q, an isometric embedding φ :
X ãÑ Y is a map such that dY pφpxq, φpyqq “ dXpx, yq for all x, y P X. If φ is surjective then
it is an isometry. Let IsompXq denote the group of all isometries of X.

A geodesic in X is an isometric embedding r0, λs ãÑ X for some λ P Λ with λ ě 0. The
image of a geodesic is called a segment. A Λ-metric space is called geodesic if every pair of
points is connected by a geodesic.

2.2 Median spaces

Definition 2.4. A Λ-metric space pX, dq is median if there exists a unique map m : X3 Ñ X
such that for all x1, x2, x3 P X, if i ‰ j then

dpxi, xjq “ dpxi,mpx1, x2, x3qq ` dpmpx1, x2, x3q, xjq.

The element mpx1, x2, x3q P X is called the median of x1, x2, x3.

Median Λ-metric spaces are examples of median algebras:

Definition 2.5. A median algebra is a set X equipped with a symmetric ternary operation
m : X3 Ñ X such that, for all a, b, c, d P X, we have

• mpa, a, bq “ a and

• mpmpa, b, dq, c, dq “ mpmpa, c, dq, b, dq.

A subset Y Ď X is a median subalgebra if mpa, b, cq P Y for all a, b, c P Y .
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Definition 2.6. Given k P N, a k-cube is a median algebra of the form σk “ t0, 1uk where
mpx, y, zq “ m P σk such that m agrees with at least two elements of tx, y, zu on each
coordinate.

The rank of a median Λ-metric space pX, dq is the supremum over all k P N such that
there is a k-cube σk which embeds in X as a median subalgebra.

The following lemma is proven in [Bow24, Lemma 13.1.1] in the case where Λ “ R, but
the same proof applies here.

Lemma 2.7. Let pX,mq be a median algebra and let d : XˆX Ñ Λ be a Λ-metric such that:
for all a, b, c P X such that mpa, b, cq “ c, we have dpa, bq “ dpa, cq ` dpc, bq. Then pX, dq is a
median Λ-metric space.

The notion of a Λ-tree was first introduced by Morgan–Shalen in [MS84]. In the case
where Λ “ R, it is equivalent to the older notion of an R-tree first defined by Tits [Tit77].

Definition 2.8. A Λ-tree is a geodesic Λ-metric space such that

• if two segments intersect at a single point, which is an endpoint of both, then their
union is a segment;

• the intersection of two segments with a common endpoint is itself a segment.

An immediate consequence of this definition is that, if T is a Λ-tree, then there is a unique
segment connecting any pair of points x1, x2 P T . We denote this segment by rx1, x2s.

As in the real case, this notion can be characterised in terms of Gromov hyperbolicity.
The notion of Gromov hyperbolicity was extended to Λ-metric spaces by Chiswell in [Chi01]
as follows.

Let ΛQ :“ Q bZ Λ, where Λ and Q are viewed as Z-modules. The elements of ΛQ can
be viewed as equivalence classes of the equivalence relation „ on Λ ˆ pZ ´ t0uq given by
pλ,mq „ pµ, nq if and only if mλ “ nµ. The equivalence class of pλ,mq is denoted by λ

m .
We equip ΛQ with the structure of a totally ordered abelian group with operation given by
λ
m `

µ
n “

nλ`mµ
nm and order given by λ

m ą 0 if and only if mλ ą 0. The map Λ Ñ ΛQ given by

λ ÞÑ λ
1 is an injective homomorphism. We identify Λ with its image in ΛQ.

Let pX, dq be a Λ-metric space and p, x, y P X. The Gromov product px, yqp P ΛQ is given
by:

px, yqp :“
1

2
pdpx, pq ` dpy, pq ´ dpx, yqq.

Definition 2.9. Let δ ě 0 be a constant. A Λ-metric space pX, dq is δ-hyperbolic with respect
to p P X if for all x, y, z P X we have

px, yqp ě mintpx, zqp, py, zqpu ´ δ.

The space pX, dq is δ-hyperbolic if it is δ-hyperbolic with respect to every p P X.

If pX, dq is δ-hyperbolic with respect to p1 P X then it is 2δ-hyperbolic with respect to any
p2 P X [Chi01, Lemma 1.2.5]. In particular, X is 0-hyperbolic if and only if X is 0-hyperbolic
with respect to some p P X.
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Lemma 2.10 (Chiswell, [Chi01, Lemmas 2.1.6 and 2.4.3]). Let pX, dq be a geodesic Λ-metric
space. Then X is a Λ-tree if and only if, for some (equivalently any) p P X, the following
hold:

(i) X is 0-hyperbolic with respect to p;

(ii) for all x, y P X we have px, yqp P Λ.

A slightly stronger version of the following characterisation was given by Bowditch [Bow24,
Lemma 15.1.2] in the case where Λ “ R (in that case, it is enough to assume that X is path-
connected rather than geodesic).

Lemma 2.11. Let pX, dq be a geodesic Λ-metric space. Then X is a Λ-tree if and only if X
is a rank 1 median Λ-metric space.

Proof. Suppose that X is a Λ-tree. Let x1, x2, x3 P X and let m P X be the unique point
such that rx1, x2s X rx1, x3s “ rx1,ms. Then rx2,ms Y rm,x3s is a segment so it follows that
m is a median of x1, x2, x3. Uniqueness of m follows from the uniqueness of the segments
rxi, xjs. If the rank of X is ě 2 then there exists an isometric embedding φ : σ2 Ñ X, where
σ2 is a 2-cube. For each pε1, ε2q P σ2, let xε1,ε2 :“ φppε1, ε2qq. Then rx0,0, x0,1s Y rx0,1, x1,1s is
a segment and rx0,0, x1,0s Y rx1,0, x1,1s is a segment but their intersection is tx0,0, x1,1u which
is not a segment so this is a contradiction. Thus X has rank 1.

Conversely, suppose that X is a geodesic rank 1 median Λ-metric space, and let p, x, y, z P

X. If px, yqp ă mintpx, zqp, py, zqpu, then let x0,0 :“ mpp, x, yq, x1,0 :“ mpp, x, zq, x1,1 :“
mpx, y, zq, x0,1 :“ mpp, y, zq. Upon observing that, for any a, b, c P X we have pa, bqc “

dpc,mpa, b, cqq, it is not hard to show that tx0,0, x0,1, x1,0, x1,1u are pairwise distinct. It follows
that tx0,0, x0,1, x1,0, x1,1u is a 2-cube embedded in X as a median subalgebra. This contradicts
the assumption that X has rank 1 so X must be 0-hyperbolic. Lastly, if x, y, p P X then
px, yqp “ dpp,mpx, y, pqq P Λ so, by Lemma 2.10, X is a Λ-tree.

Definition 2.12. Let pX, dq be a Λ-tree and x P X. The valence of x is the cardinality of
the set of geodesic-connected components of X ´ txu. Given a cardinal κ, we say that X has
valence κ if every every point in X has valence κ.

For any cardinal κ, there is a unique complete R-tree with valence κ [MNO92, Nik89].

2.3 Products

The usual ways of constructing product metric spaces apply to Λ-metric spaces. Of particular
interest to us is the ℓ1 product: Given N P tt1, . . . , nu : n P NuYtNu and a family of Λ-metric
spaces X :“ ppXn, dnqqnPN , the ℓ1 product of X based at z “ pznqnPN P

ś

nPN Xn is the set

ℓ1pX , zq :“
!

x P
ź

nPN

Xn :
ÿ

nPN

dnpxn, znq ă 8

)

equipped with the Λ-metric dpx, yq “
ř

nPN dnpxn, ynq. If each pXn, dnq is median then
ś

nXn

is median and the median map is given by mpx, y, zq “ pmpxn, yn, znqqnPN .

10



2.4 BMW groups

Let Γ1 “ pV1, E1q,Γ2 “ pV2, E2q be simple graphs. The Cartesian product Γ of Γ1 and Γ2 is
the graph with vertex set V :“ V1 ˆ V2 and edge set E :“ ttpv1, v2q, pw1, w2qu : tv1, w1u P E1

and v2 “ w2 or tw1, w2u P E2 and v1 “ w1u. Equivalently, the ℓ1 product Γ1 ˆ Γ2 admits a
natural cell structure where all the closed cells are either points, closed intervals or squares,
and Γ is the 1-skeleton of Γ1 ˆ Γ2.

A BMW group is a group G which admits a free transitive action on the vertex set of the
Cartesian product of two locally finite simplicial trees T1, T2 such that the action preserves
the factors, meaning that G ď IsompT1q ˆ IsompT2q. All BMW groups admit a specific type
of presentation:

Definition 2.13. A BMW presentation is a group presentation of the form xAYX|Ry where
A,X are disjoint finite sets and the set of relations R satisfies the following:

• R “ R2 \ R4 where each r P R2 is of the form r “ t2 for some t P A Y X and each
r P R4 is of the form r “ axa1x1 for some a, a1 P AYA´1, x, x1 P X YX´1.

• For all a P A Y A´1, x P X Y X´1 there exists a unique a1 P A Y A´1 and a unique
x1 P X YX´1 such that axa1x1 or a1x1ax or a´1x1a1x´1 or a1x´1a´1x1 belongs to R4.

The following proposition is from [Cap19, Proposition 4.2].

Proposition 2.14. Every BMW group admits a BMW presentation. Conversely, let G “

xA Y X|Ry be a BMW presentation with R “ R2 Y R4 as above. Let A1 :“ ta P A : a2 P

R2u, X 1 :“ tx P X : x2 P R2u and m :“ |A´A1|,m1 :“ |A1|, n :“ |X´X 1|, n1 :“ |B1|. Then the
Cayley graph of G with respect to AYX is the Cartesian product of two simplicial trees TA, TX
with degree 2m ` m1, 2n ` n1 respectively. The action of G on its Cayley graph preserves the
factors and is free and transitive on the vertex set so in particular G is a BMW group.

Definition 2.15. A group presentation xS|Ry is positive if every element r P R is of the form
r “ xy where x is a non-trivial word in S and y is a non-trivial word in S´1.

We will only consider BMW groups which admit positive BMW presentations. In par-
ticular, if G “ xA Y X|Ry is a positive BMW presentation then R2 “ H and for each
r “ axa1x1 P R4 we have |ta, a1u X A| “ |ta, a1u X A´1| “ |tx, x1u X X| “ |tx, x1u X X´1| “ 1
so it follows that |R| “ mn and G is torsion-free [Cap19, Proposition 4.2(ii)].

Definition 2.16. A BMW group G is reducible if there is a finite index subgroup of G which
splits non-trivially as a direct product. Otherwise G is irreducible.

2.5 Cantor–Bendixson rank

Let Y be a Polish space (i.e. separable and completely metrisable). The Cantor–Bendixson
theorem (see e.g. [Kec95]) states that there is a unique decomposition of Y as a disjoint union
KpY q \ C, where KpY q is perfect (i.e. closed with no isolated points) and C is countable.
Any non-empty perfect Polish space contains a Cantor set, so the perfect subspace KpY q is
empty if and only if Y is countable.

The Cantor–Bendixson derivatives of Y are defined by transfinite induction. The first
derivative Y p1q is the set consisting of all the points of Y which are not isolated. If α is an
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ordinal for which Y pαq is defined then Y pα`1q is the set of non-isolated points of Y pαq. If β is
a limit ordinal such that Y pαq is defined for all α ă β then Y pβq :“ XαăβY

pαq. The Cantor–
Bendixson theorem implies that there is a countable ordinal α such that Y pα`1q “ Y pαq (i.e.
Y pαq “ KpY q). The minimal such α is called the Cantor–Bendixson rank (or CB-rank) of Y .

Remark 2.17. If Y is a countable compact metrisable space then its CB-rank must be a
successor ordinal. Indeed, if α is a limit ordinal and the CB-rank of Y is greater than or equal
to α, then there exists yβ P Y pβq for all β ă α and, by compactness, this implies that there
is a sequence in Y which converges to a point in XβăαY

pβq “ Y pαq. Since Y is countable,
KpY q “ H so α is the not the CB-rank of Y .

3 Ores and their extracted groups

The goal of this section is to introduce an abstract construction which we will use to produce
groups which act freely and transitively on various median metric spaces. A good example to
keep in mind while reading this section is the construction of a free group using words in an
alphabet AYA´1.

We start with some notions and results from order theory. Recall that a partially ordered
set is a set Y equipped with a reflexive, antisymmetric and transitive relation ĺ.

Definition 3.1 (Semilattice, meet, join, bottom). Let pY,ĺq be a partially ordered set. Fix
x, y P Y .

• Suppose there exists an element z P Y such that z ĺ x, z ĺ y and, for all s P Y such
that s ĺ x and s ĺ y, we have that s ĺ z. Then z is called the meet of x and y and we
write x^ y :“ z.

• Suppose there exists an element z P Y such that x ĺ z, y ĺ z and for all s P Y such
that x ĺ s and y ĺ s we have that z ĺ s. Then z is called the join of x and y and we
write x_ y :“ z.

• Suppose there exists z P Y such that z ĺ s for all s P Y . Then z is called the bottom
element of Y (by the antisymmetry of ĺ, such an element must be unique).

The partially ordered set Y is a meet semilattice if, for all x, y P Y , the meet x^ y P Y exists.

Where they are defined, the operations ^ and _ are clearly associative, so we will write
x^ y ^ z “ x^ py ^ zq “ px^ yq ^ z and x_ y _ z “ x_ py _ zq “ px_ yq _ z.

Definition 3.2 (Orthogonality). Let Y be a meet semilattice with a bottom element id. We
say that two elements x, y P Y are orthogonal, denoted x K y, if x^ y “ id and x_ y exists.

Remark 3.3. The relation K is symmetric and irreflexive on Y ´ tidu.

Definition 3.4 (Median semilattice). A meet semilattice pY,ĺq is median if the following
holds. For any a, b, c P Y , the join pa^ bq _ pb^ cq _ pa^ cq exists and, for any x P Y ,

px^ a^ bq _ px^ b^ cq _ px^ a^ cq “ x^ ppa^ bq _ pb^ cq _ pa^ cqq.

The term median is justified by the following result of Sholander.
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Theorem 3.5 (Sholander, [Sho54]). Let pY,ĺq be a median semilattice and define m : Y 3 Ñ

Y by mpa, b, cq :“ pa^ bq _ pb^ cq _ pa^ cq. Then pY,mq is a median algebra.

Definition 3.6. Let pM, ¨ , 1q be a monoid.

• M is cancellative if, for all x, y, z P M , we have that x ¨ y “ x ¨ z implies that y “ z and
x ¨ y “ z ¨ y implies that x “ z.

• Let ˚ : M Ñ M be an involution. Then M is a monoid with involution ˚ if px ¨ yq˚ “

y˚ ¨ x˚ for all x, y P M , where we denote by m˚ the ˚-image of m P M .

Remark 3.7. If M is a cancellative monoid with involution ˚ then 1˚ “ 1. Indeed, for any
m P M , we have 1 ¨m˚ “ m˚ “ pm ¨ 1q˚ “ 1˚ ¨m˚ so 1 “ 1˚ by right cancellation .

Definition 3.8 (Ore). An ore is a tuple pY,ĺ, id, ˝,´1q such that the axioms (O1) – (O6)
below hold, where Y is a set, ĺ is a partial order on Y , id P Y , ˝ is a binary operation on Y
and ´1 : Y Ñ Y is a map.

(O1) pY,ĺq is a meet semilattice with bottom element id.

(O2) pY, ˝q is a cancellative monoid with involution ´1 and identity id.

(O3) For all x, y P Y we have that x ĺ y if and only if there exists z P Y such that y “ x ˝ z.

Let y´1 denote the ´1-image of each y P Y . An element f P Y is called inadmissible if there
exist x, y, z P Y such that y ‰ id and f “ x ˝ y ˝ y´1 ˝ z. Otherwise f is admissible.

Let G Ď Y be the set of admissible elements. It follows from (O3) that if y P G and x ĺ y
then x P G. Therefore pG,ĺq is a meet semilattice.

(O4) pG,ĺq is a median semilattice.

(O5) Suppose that x, y P Y are orthogonal, x is admissible and there exists y1 P G is such
that x_ y “ x ˝ y1. Then y is admissible.

(O6) Let x, y P G be orthogonal and, using (O3), let x1, y1 P Y be such that x_ y “ x ˝ y1 “

y ˝ x1. Then x1, y1 are admissible, x´1 K y1 and y´1 K x1, and

x´1 _ y1 “ x´1 ˝ y “ y1 ˝ px1q´1 “ py´1 _ x1q´1.

Example 3.9. Let A be a non-empty set and A´1 be the set of formal inverses of elements
in A. Let W “ WpAYA´1q be the set of words in AYA´1. Given w,w1 P W, let w ˝ w1 be
the concatenation of w and w1. We say that w ĺ w1 if and only if w1 “ w ˝ v for some v P W.
If w “ aε11 ˝ . . . ˝ aεnn , where ai P A and εi P t1,´1u for each i, then w´1 :“ a´εn

n ˝ . . . ˝ a´ε1
1 .

Let id P W be the empty word. Then pW,ĺ, id, ˝,´1q is an ore.

Lemma 3.10. Let pY,ĺ, id, ˝,´1q satisfy (O1), (O2) and (O3). Let x, y P Y and suppose
there exists z P Y such that x ĺ z and y ĺ z. Then there exists x_ y P Y .
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Proof. By (O3) there exists a, b P Y such that z “ x ˝ a “ y ˝ b. By (O1) there exists
c :“ a´1^b´1 and by (O3) again there exist a1, b1 P Y such that a´1 “ c˝a1´1 and b´1 “ c˝b1´1.
By (O2) this implies that a “ a1 ˝ c´1 and b “ b1 ˝ c´1. Note that x ˝ a1 ˝ c´1 “ z “ y ˝ b1 ˝ c´1

so by (O2) x ˝a1 “ y ˝ b1. Let w :“ x ˝a1. Then x ĺ w and y ĺ w by (O3). Let z1 P Y be such
that x ĺ z1 and y ĺ z1 and let w1 :“ z1 ^ w. Then there exists c1 P Y such that w “ w1 ˝ c1

and, by the above argument there exist a2, b2 P Y such that w1 “ x ˝ a2 “ y ˝ b2. We then
have

z “ x ˝ a “ x ˝ a1 ˝ c´1 “ x ˝ a2 ˝ c1 ˝ c´1

“ y ˝ b “ y ˝ b1 ˝ c´1 “ y ˝ b2 ˝ c1 ˝ c´1.

Since c “ a´1 ^ b´1, this implies that c1 “ id and therefore w1 “ w. Therefore w ĺ z1 and
w “ x_ y.

Remark 3.11. Suppose pY,ĺ, id, ˝,´1q is as in Lemma 3.10. Let x, y, z P Y be such that
x ĺ y and y K z. Then x^ z “ id and x, z ĺ y _ z, so x K z by Lemma 3.10.

For the rest of the section, we assume that pY,ĺ, id, ˝,´1q is an ore and G Ď Y is the set
of admissible elements in Y .

Definition 3.12 (Median). Define a mapm : G3 Ñ G bympf, g, hq :“ pf^gq_pg^hq_pf^hq

for all f, g, h P G. The map m is called the median map and for all f, g, h P G, the point
mpf, g, hq is the median of f, g, h.

Remark 3.13. The map m is well-defined by (O4). By Theorem 3.5, pG,mq is a median
algebra.

Definition 3.14 (Orthogonal complement, parallel transport). Fix y P Y . The orthogonal
complement of y is the set yK :“ tx P Y : x K yu. Define a map Φy : yK Ñ Y by Φypxq “ x1,
where x1 P Y is the unique element such that y _ x “ y ˝ x1 (existence is given by (O3) and
uniqueness by (O2)). The element Φypxq is called the parallel transport of x along y.

Remark 3.15. It follows from (O6) that ΦgpG X gKq “ G X pg´1qK and Φg´1 is the inverse
map of Φg for all g P G.

Definition 3.16 (Faces). Given x, y P Y , we say that x is a face of y if x ĺ y. Given y “ x˝z
with x, z P Y , let y ˜ x :“ z and let y ´ z :“ x.

Remark 3.17. The parallel transport maps preserve the face relation. Indeed, suppose that
a, x, y P Y with x K y and a ĺ x. Then a ^ y “ id and a ĺ x _ y, so a K y. Moreover
y ˝Φypaq “ y_a ĺ y_x “ y ˝Φypxq by Definitions 3.1 and 3.14. By (O2) and (O3), we then
have that Φypaq ĺ Φypxq.

In particular, it follows from Remark 3.15 that x “ id if and only if Φypxq “ id.

Lemma 3.18 (Spanning a cube). Suppose that a, b, c P G are pairwise orthogonal. Then
Φapbq K Φapcq, Φbpaq K Φbpcq, Φcpaq K Φcpbq and we have the following equalities:

ΦΦcpbqpΦcpaqq “ ΦΦbpcqpΦbpaqq

ΦΦapbqpΦapcqq “ ΦΦbpaqpΦbpcqq

ΦΦcpaqpΦcpbqq “ ΦΦapcqpΦapbqq.
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Proof. By (O6) we have that a´1 K Φapbq, a´1 K Φapcq and b “ Φa´1pΦapbqq, c “ Φa´1pΦapcqq.
Therefore, using Remark 3.17, if Φapbq ^Φapcq ‰ id then b^ c ‰ id, which is a contradiction.
Thus Φapbq ^ Φapcq “ id and, by a similar argument, Φbpaq ^ Φbpcq “ Φcpaq ^ Φcpbq “ id.

Let m :“ mpa _ b, a _ c, b _ cq “ a _ b _ c P G and let x, y, z P G be such that m “

pa _ bq ˝ x “ pa _ cq ˝ y “ pb _ cq ˝ z. Then Φapbq ˝ x “ Φapcq ˝ y, Φbpaq ˝ x “ Φbpcq ˝ z and
Φcpaq ˝ y “ Φcpbq ˝ z. Thus Φapbq K Φapcq, Φbpaq K Φbpcq and Φcpaq K Φcpbq by Lemma 3.10.
Moreover a, b, c ĺ a ˝ pΦapbq _ Φapcqq so

a ˝ Φapbq ˝ x “ a ˝ Φapcq ˝ y “ m ĺ a ˝ pΦapbq _ Φapcqq.

Therefore Φapbq ˝ x “ Φapcq ˝ y “ Φapbq _ Φapcq, which implies that ΦΦapbqpΦapcqq “ x
and ΦΦapcqpΦapbqq “ y. By a similar argument, ΦΦbpcqpΦbpaqq “ z, ΦΦbpaqpΦbpcqq “ x,
ΦΦcpaqpΦcpbqq “ y and ΦΦcpbqpΦcpaqq “ z.

Definition 3.19. Let f, g P G. We say that f and g concatenate geodesically if f´1 ^ g “ id.

Lemma 3.20. Let f, g P G and suppose that f and g concatenate geodesically. Then f ˝g P G.

Proof. Let a, b, c P Y be such that f ˝ g “ a ˝ b ˝ b´1 ˝ c. Using the fact that admissibility
is preserved by passing to faces, we can assume without loss of generality that a ^ f “

c´1 ^ g´1 “ id. Note that a, f ĺ f ˝ g and c´1, g´1 ĺ g´1 ˝ f´1 so a K f and c´1 K g´1 by
Lemma 3.10. Moreover, f _ a ĺ f ˝ g so Φf paq ĺ g. Therefore Φf paq is admissible, which
implies by (O5) that a is admissible. Let f1 :“ f^pa˝bq, f2 :“ f˜f1, g1 :“ Φf paq, g2 :“ g˜g1
and x :“ Φf1paq (this exists by Remark 3.11). By (O6) we have x P G. Note that f1 ˝x ĺ a˝b
so by definition f2 ^ x “ id and f2, x ĺ f2 ˝ g, so f2 K x. By (O6) again, Φxpf2q P G and
x´1 K Φxpf2q.

Since pY, ˝q is cancellative, Φapf1q ĺ b. Let b1 :“ Φapf1q, b2 :“ b ˜ b1. Then b2 K Φxpf2q

and ΦΦxpf2qpb2q ĺ g2. Let y :“ x ˝ b2 and note that y K f2. Let z :“ ΦΦxpf2qpb2q and
g1
2 :“ g2 ˜ z. Since y ˝ b´1 ˝ c “ f2 ˝ g, it follows from (O5) that y is admissible and from
(O6) that y´1 K Φypf2q so b´1

2 K Φypf2q. Now b´1 _ Φypf2q ĺ b´1 ˝ c “ Φypf2q ˝ g1
2 so

z´1 ĺ ΦΦypf2qpb
´1q ĺ g1

2 which implies that g “ g1 ˝ z ˝ z´1 ˝ pg1
2 ˜ z´1q. Since g P G, z “ id

so b2 “ id.
Therefore Φapf1q “ b. It follows that b, b´1 P G and b´1 K x´1. The admissibility of f

implies that b´1 ^Φxpf2q “ id so, since b´1 ˝ c “ Φxpf2q ˝ pg˜Φf2pxqq, we have b´1 K Φxpf2q.
Applying Lemma 3.18 to the triple b´1,Φxpf2q, x´1, we find that f´1

1 K f2, g
´1
1 K g2 and

Φf2pf´1
1 q “ Φg´1

1
pg2q. By (O6), f´1 “ f´1

2 ˝ f´1
1 “ Φf2pf´1

1 q ˝ Φf´1
1

pf2q´1 and g “ g1 ˝ g2 “

Φg´1
1

pg2q ˝Φg2pg´1
1 q´1 so, since f and g concatenate geodesically, Φf2pf´1

1 q “ id. This implies

that f1 “ id and therefore b “ id.

Given f, g P G, observe that f ´ pf´1 ^ gq´1 and g ˜ pf´1 ^ gq concatenate geodesically.
We can therefore define an operation ‹ : GˆG Ñ G by

f ‹ g :“ pf ´ pf´1 ^ gq´1q ˝ pg ˜ pf´1 ^ gqq.

We will prove that ‹ defines a group operation on G. To this end, let us prove some
supporting lemmas.

Lemma 3.21. Let a, b, c P G and suppose a and b concatenate geodesically. Let x, c2, c3 P G
be such that b´1 “ pb´1 ^ cq ˝ x, c ^ pb´1 ˝ a´1q “ pc ^ b´1q ˝ c2 and c “ pc ^ b´1q ˝ c2 ˝ c3.
Then
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(i) x K c2;

(ii) Φxpc2q ĺ a´1;

(iii) pa ˝ bq ‹ c “ pa´ Φxpc2q´1q ˝ Φc2pxq´1 ˝ c3.

Proof. Let F :“ x^ c2. Then b
´1 “ pb´1 ^ cq ˝F ˝ px˜F q and c “ pc^ b´1q ˝F ˝ pc2 ˜F q ˝ c3.

Therefore pc^ b´1q ˝F ĺ c^ b´1 which implies that pc^ b´1q ˝F “ c^ b´1 and then F “ id
by left cancellation. Let U :“ c^ pb´1 ˝ a´1q. Then

b´1 ˝ a´1 “ pc^ b´1q ˝ x ˝ a´1

“ pc^ b´1q ˝ c2 ˝ ppb´1 ˝ a´1q ˜ Uq.

Since pY, ˝q is cancellative, this implies that x ˝ a´1 “ c2 ˝ ppb´1 ˝ a´1q ˜ Uq, so x_ c2 exists
by Lemma 3.10. This completes the proof of (i).

We have that x ˝ a´1 “ pb´1 ˝ a´1q ˜ pc ^ b´1q “ c2 ˝ ppb´1 ˝ a´1q ˜ Uq so there exists
A P G such that

pb´1 ˝ a´1q ˜ pc^ b´1q “ px_ c2q ˝A “ x ˝ Φxpc2q ˝A.

Thus a´1 “ Φxpc2q ˝A by left cancellation, which proves (ii).
We have that

pb´1 ˝ a´1q ˜ U “ px ˝ a´1q ˜ c2

“ px ˝ Φxpc2q ˝Aq ˜ c2

“ pc2 ˝ Φc2pxq ˝Aq ˜ c2

“ Φc2pxq ˝A

and A “ a´1 ˜ Φxpc2q so A´1 “ a´ Φxpc2q´1. Therefore

pa ˝ bq ‹ c “ ppa ˝ bq ´ ppa ˝ bq´1 ^ cq´1q ˝ pc˜ ppa ˝ bq´1 ^ cqq

“ ppb´1 ˝ a´1q ˜ Uq´1 ˝ pc˜ Uq

“ pa´ Φxpc2q´1q ˝ Φc2pxq´1 ˝ c3

which completes the proof of (iii).

Lemma 3.22. The operation ‹ is associative.

The strategy of the proof of this lemma is inspired by the proof of Lemma 40.141 in
[CRHK24].

Proof. Fix h1, h2, h3 P G and let B :“ h2 ^ h´1
1 . Then h1 ‹ h2 “ rh1 ˝ rh2, where h1 “ rh1 ˝B´1

and h2 “ B ˝ rh2. Let D :“ h3 ^ rh´1
2 and A :“ ph3 ^ prh1 ˝ rh2q´1q ˜ D. Then there exist

W,h1
3 P G such that rh´1

2 “ D ˝W and h3 “ D ˝A ˝ h1
3. By Lemma 3.21

(i) W K A,

(ii) there exists h1
1 P G such that rh1 “ h1

1 ˝ ΦW pAq´1 and
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Figure 1: Notation for the proof of Lemma 3.22. Elements of G are represented by paths,
two paths represent the same element if they have the same endpoints and the operation ˝ is
represented by path concatenation.

(iii) ph1 ‹ h2q ‹ h3 “ h1
1 ˝ h1

2 ˝ h1
3, where h

1
2 :“ ΦApW q´1.

Since D ĺ h̃´1
2 ĺ h´1

2 and D ĺ h3, we have D ĺ h´1
2 ^ h3. So there exists E P G such that

h´1
2 ^ h3 “ D ˝ E. Then D ˝ E ĺ h3 “ D ˝ A ˝ h1

3 so E ĺ A ˝ h1
3. Also D ˝ E ĺ h´1

2 “

rh´1
2 ˝B´1 “ D ˝W ˝B´1 so E ĺ W ˝B´1.

Claim 1. E K W and ΦW pEq ĺ B´1.

Proof. Note that D ˝ pE ^ W q ĺ D ˝ W “ rh´1
2 so, since D ˝ E “ h´1

2 ^ h3 ĺ h3, we have

that D ˝ pE ^ W q ĺ rh´1
2 ^ h3 “ D. Therefore E ^ W “ id. Moreover h´1

2 “ D ˝ W ˝ B´1

and h´1
2 ^ h3 “ D ˝ E, so E,W ĺ W ˝ B´1, which implies that E K W . Finally, E _ W “

W ˝ ΦW pEq ĺ W ˝B´1 so ΦW pEq ĺ B´1 as required. ■

Claim 2. E K A.

Proof. Let F – E ^ A. Then, by Remark 3.17, ΦW pF q ĺ ΦW pAq and, by Remark 3.17 and
Claim 1, ΦW pF q ĺ ΦW pEq ĺ B´1. Therefore:

B´1 “ ΦW pF q ˝ pB´1 ˜ ΦW pF qq and ΦW pAq´1 “ pΦW pAq´1 ´ ΦW pF q´1q ˝ ΦW pF q´1.

But then

h1 “ rh1 ˝B´1

“ h1
1 ˝ pΦW pAq´1 ´ ΦW pF q´1q ˝ ΦW pF q´1 ˝ ΦW pF q ˝ pB´1 ˜ ΦW pF qq.

Since h1 is admissible this implies that ΦW pF q “ ΦW pF q´1 “ id and therefore F “ id. Since
E ĺ A ˝ h1

3, we then have that E K A. ■
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In summary:

h1 “ rh1 ˝B´1 “ h1
1 ˝ ΦW pAq´1 ˝ ΦW pEq ˝ pB´1 ˜ ΦW pEqq,

h2 “ B ˝ rh2 “ pB ´ ΦW pEq´1q ˝ ΦW pEq´1 ˝W´1 ˝D´1

“ pB ´ ΦW pEq´1q ˝ ΦEpW q´1 ˝ E´1 ˝D´1,

h3 “ D ˝A ˝ h1
3 “ D ˝A ˝ ΦApEq ˝ ph1

3 ˜ ΦApEqq

“ D ˝ E ˝ ΦEpAq ˝ ph1
3 ˜ ΦApEqq,

A K W , E K A and E K W .
Recall that h3 ^ h´1

2 “ D ˝ E. We therefore have:

h2 ‹ h3 “
“

h2 ´ ph3 ^ h´1
2 q´1

‰

˝
“

h3 ˜ ph3 ^ h´1
2 q

‰

“
“

pB ´ ΦW pEq´1q ˝ ΦEpW q´1
‰

˝
“

ΦEpAq ˝ ph1
3 ˜ ΦApEqq

‰

Let X :“ ΦΦW pAqpΦW pEqq and Y :“ ΦΦEpAqpΦEpW qq´1. We then have:

h1 ‹ ph2 ‹ h3q “
“

h1
1 ˝ ΦW pAq´1 ˝ ΦW pEq ˝ pB´1 ˜ ΦW pEqq

‰

‹
“

pB ´ ΦW pEq´1q ˝ ΦEpW q´1 ˝ ΦEpAq ˝ ph1
3 ˜ ΦApEqq

‰

“
“

h1
1 ˝ ΦW pAq´1 ˝ ΦW pEq

‰

‹
“

ΦEpW q´1 ˝ ΦEpAq ˝ ph1
3 ˜ ΦApEqq

‰

“
“

h1
1 ˝ ΦΦW pAqpΦW pEqq ˝ ΦΦEpW qpΦEpAqq´1

‰

‹
“

ΦΦEpW qpΦEpAqq ˝ ΦΦEpAqpΦEpW qq´1 ˝ ph1
3 ˜ ΦApEqq

‰

“
“

h1
1 ˝X

‰

‹
“

Y ˝ ph1
3 ˜ ΦApEq

‰

,

where we use (O6) for the third equality. Let Z :“ X´1 ^ pY ˝ ph1
3 ˜ΦApEqqq. Then Z ĺ X´1

andX´1 K Y by Lemma 3.18, so Z K Y by Remark 3.11. It follows that ΦY pZq ĺ h1
3˜ΦApEq.

But ΦY pZq ĺ ΦY pX´1q “ ΦApEq´1 by Lemma 3.18. Therefore, since

h1
3 “ pΦApEq ´ ΦY pZq´1q ˝ ΦY pZq´1 ˝ ΦY pZq ˝ pph1

3 ˜ ΦApEqq ˜ ΦY pZqq,

and h1
3 is admissible, we have ΦY pZq “ ΦY pZq´1 “ id, which implies that Z “ id. Moreover,

Lemma 3.18 implies that X ˝ Y “ ΦApW q´1 ˝ ΦApEq so

h1 ‹ ph2 ‹ h3q “h1
1 ‹

“

X ˝ Y ˝ ph1
3 ˜ ΦApEqq

‰

“h1
1 ‹

“

ΦApW q´1 ˝ ΦApEq ˝ ph1
3 ˜ ΦApEqq

‰

“h1
1 ‹ ph1

2 ˝ h1
3q

“h1
1 ˝ h1

2 ˝ h1
3

“ph1 ‹ h2q ‹ h3.

Theorem 3.23. pG, ‹q is a group.

Proof. By Lemma 3.22, ‹ is an associative operation. It is clear from the definition that id is a
two-sided identity for ‹. For any g P G, g‹g´1 “ pg´1˜ppg´1q´1^gqq´1˝pg˜ppg´1q´1^gq “

id ˝ id “ id and similarly g´1 ‹ g “ id so g´1 is a two-sided inverse for g.

Definition 3.24. We will call pG, ‹q the group extracted from Y .
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Example 3.25. Let pW,ĺ, id, ˝,´1q be the ore defined in Example 3.9. Then the group
extracted from W is the free group F pAq.

Remark 3.26. In general, there is no reason for a retraction Y Ñ G which commutes with ˝

and ´1 to exist. In certain nice settings however, it is possible to construct such a retraction
(see Sections 4.5).

Lemma 3.27. For each a, b P G, define:

Ipa, bq :“ tc P G : pc´1 ‹ aq ^ pc´1 ‹ bq “ idu.

Then Ipa, bq “ tc P G : mpa, b, cq “ cu. It follows that the action of G on itself by left
multiplication is median preserving.

Proof. If the first part of the lemma holds, then mpa, b, cq is the unique element in the inter-
section Ipa, bqXIpa, cqXIpb, cq for any a, b, c P G (see [Bow24, Lemma 3.2.1]). It is immediate
from the definition of Ipa, bq that g ‹ Ipa, bq “ Ipg ‹ a, g ‹ bq for all a, b, g P G, so this implies
that g ‹mpa, b, cq “ mpg ‹ a, g ‹ b, g ‹ cq for all a, b, c, g P G.

We now prove the first part of the lemma. Let a, b, c P G be such that c P Ipa, bq. Suppose
that a ^ b “ id. Then a ^ b, b ^ c, a ^ c ĺ c, so m :“ mpa, b, cq ĺ c. Let D P G be such that
c “ m ˝D. Observe that pa^ cq K pb^ cq, so m “ pa^ cq _ pb^ cq “ pa^ cq ˝ Φa^cpb^ cq “

pb^ cq ˝ Φb^cpa^ cq. We then have:

c´1 ‹ a “ D´1 ˝ Φa^cpb^ cq´1 ˝ pa˜ pa^ cqq

c´1 ‹ b “ D´1 ˝ Φb^cpa^ cq´1 ˝ pb˜ pb^ cqq.

Therefore D´1 ĺ pc´1 ‹ aq ^ pc´1 ‹ bq which implies that D “ id and m “ c.
In the general case, let D,E, F P G be such that

a^ b “ pa^ b^ cq ˝D, b^ c “ pa^ b^ cq ˝ E, a^ c “ pa^ b^ cq ˝ F.

Observe that D,E and F are pairwise orthogonal, so by Lemma 3.18, ΦEpDq K ΦEpF q and
ΦF pDq K ΦF pEq. Let a1, a2, b1, b2, c1, c2 P G be such that

a “ pa^ cq ˝ a1 “ pa^ bq ˝ a2, b “ pb^ cq ˝ b1 “ pa^ bq ˝ b2, c “ pa^ cq ˝ c1 “ pb^ cq ˝ c2.

Then E ˝ c2 “ F ˝ c1 “ pE _F q ˝ c3 for some c3 P G such that c3´1
ĺ c1´1 and c3´1

ĺ c2´1.
But then

c3´1
ĺ c1´1

˝ a1 “ c´1 ‹ a and c3´1
ĺ c2´1

˝ b1 “ c´1 ‹ b,

so the fact that c P Ipa, bq implies that c3 “ id. Therefore c1 “ ΦF pEq, and c2 “ ΦEpF q.
Moreover,

b “ pa^ b^ cq ˝ E ˝ b1 “ pa^ b^ cq ˝D ˝ b2

so E ˝ b1 “ D ˝ b2 “ pE _ Dq ˝ b3 for some b3 P G. Therefore b1 “ ΦEpDq ˝ b3 and
c´1 ‹ b “ ΦEpF q´1 ˝ ΦEpDq ˝ b3. By (O6), ΦEpF q´1 K ΦΦEpF qpΦEpDqq and

ΦEpF q´1 _ ΦΦEpF qpΦEpDqq “ ΦEpF q´1 ˝ ΦEpDq “ ΦΦEpF qpΦEpDqq ˝ pΦΦEpDqpΦEpF qqq´1.
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Thus ΦΦEpF qpΦEpDqq ĺ ΦEpF q´1 ˝ ΦEpDq ˝ b3 “ c´1 ‹ b. By a symmetric argument,
ΦΦF pEqpΦF pDqq ĺ c´1 ‹ a. By Lemma 3.18, ΦΦEpF qpΦEpDqq “ ΦΦF pEqpΦF pDqq, so this
implies that D “ id since c P Ipa, bq. Thus a^ b ĺ c.

Now let A,B,C P G be such that a “ pa ^ bq ˝ A, b “ pa ^ bq ˝ B, c “ pa ^ bq ˝ C. Then
c´1 ‹ a “ C´1 ‹A and c´1 ‹ b “ C´1 ‹B so, by the above argument, we have:

mpa, b, cq “ pa^ bq ˝mpA,B,Cq “ pa^ bq ˝ C “ c.

Conversely, let a, b, c P G be such that mpa, b, cq “ c. Suppose once more that a^ b “ id,
so pa^ cq K pb^ cq and c “ pa^ cq ˝ Φa^cpb^ cq “ pb^ cq ˝ Φb^cpa^ cq. Then

c´1 ‹ a “ Φa^cpb^ cq´1 ˝ pa˜ pa^ cqq, c´1 ‹ b “ Φb^cpa^ cq´1 ˝ pb˜ pb^ cqq.

Let D P G be such that D ĺ pc´1 ‹ aq ^ pc´1 ‹ bq and let D1 :“ D ^ Φa^cpb ^ cq´1, D2 :“
D^Φb^cpa^ cq´1. Then D1 K Φb^cpa^ cq´1 and ΦΦb^cpa^cq´1pD1q ĺ pb^ cq´1 ^ pb˜ pb^ cqq

which, by the admissibility of b, implies that D1 “ id. By a symmetric argument D2 “ id, so
D K Φa^cpb^ cq´1 and D K Φb^cpa^ cq´1. Let E,F P G be such that

D _ Φa^cpb^ cq´1 “ Φa^cpb^ cq´1 ˝ E, D _ Φb^cpa^ cq´1 “ Φb^cpa^ cq´1 ˝ F.

Then pb ^ cq ˝ F ĺ b and pa ^ cq ˝ E ĺ a. By Lemma 3.18 it follows that Φpb^cq´1pF q “

Φpa^cq´1pEq ĺ a^ b so E “ F “ D “ id.
If we don’t assume that a ^ b “ id, we have a ^ b ĺ c by assumption. So let A,B,C P G

be such that a “ pa ^ bq ˝ A, b “ pa ^ bq ˝ B, c “ pa ^ bq ˝ C. Then pc´1 ‹ aq ^ pc´1 ‹ bq “

pC´1 ‹Aq ^ pC´1 ‹Bq “ id and c P Ipa, bq.

Definition 3.28. Let Λ be a totally ordered abelian group. A Λ-length function on Y is a
map ℓ : Y Ñ Λ such that

• ℓ is positive definite: ℓpidq “ 0 and ℓpfq ą 0 for all f ‰ id;

• ℓ is symmetric: ℓpf´1q “ ℓpfq for all f P Y ;

• ℓpf ˝ gq “ ℓpfq ` ℓpgq for all f, g P Y .

If Λ “ R, we say that ℓ is a length function.

Suppose that Y admits a Λ-length function ℓ and define d : G ˆ G Ñ R by dpf, gq :“
ℓpf´1 ‹ gq “ ℓpfq ` ℓpgq ´ 2ℓpf ^ gq for all f, g P G.

Proposition 3.29. The map d is a Λ-metric and the Λ-metric space pG, dq is median.

Proof. Symmetry and positive definitiveness of d follows immediately from the definition of a
length function. The triangle inequality follows from median property, which we now prove.
Let a, b, c P G be such that mpa, b, cq “ c. By Lemma 3.27 pc´1 ‹ aq ^ pc´1 ‹ bq “ id so
a´1 ‹ b “ pa´1 ‹ cq ˝ pc´1 ‹ bq. Therefore dpa, bq “ dpa, cq ` dpc, bq and, by Lemma 2.7, pG, dq

is a median Λ-metric space with median map m.

Remark 3.30. It is immediate from the definition of the Λ-metric that the action of G on
itself by left multiplication is by isometries.
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Lemma 3.31. The rank of pG, dq is

rkpGq “ suptk P N : D g1, . . . , gk P G´ tidu such that gi K gj @i ‰ ju.

Proof. Let k P N, let σk “ t0, 1uk be a k-cube and let φ : σk Ñ G be a median-preserving
embedding. Up to composing with an element of G, we can assume that φp0q “ id. For each i,
let χi : t1, . . . , ku Ñ t0, 1u be the characteristic map of i. Then tφpχiq : 1 ď i ď ku Ď G´tidu

are pairwise orthogonal. Conversely, if tx1, . . . , xku Ď G ´ tidu are pairwise orthogonal then
the set tid,

Ž

iPI xi : I Ď t1, . . . , kuu is an embedded k-cube.

4 Actions on R-trees with prescribed axis stabilisers

We will use the framework established in the previous section to construct groups which act
freely and transitively on R-trees. The main results of this section are stated below and will
be proven in Section 4.4. In Section 4.5 we will show that some of the ores we construct admit
retractions to their extracted groups which commute with the operations.

Let SubNCpRq denote the set on non-cyclic subgroups of R and let K denote the set of
cardinals κ such that κ ď 2ℵ0 .

Theorem 4.1. Let ι : SubNCpRq Ñ K be any map which is supported on ď 2ℵ0 elements of
SubNCpRq. Then there exists a group G and a free transitive action of G on the complete
universal real tree T with valence 2ℵ0 such that the following holds. For each H ď R, let AH

be the set of orbits G ¨L such that L Ď T is a line and the action StabGpLq ñ L is isomorphic
to H ñ R. If H P SubNCpRq then |AH | “ ιpHq.

Theorem 4.2. Let 3 ď κ ă 2ℵ0 be a cardinal. There are no free transitive actions on the
complete universal R-tree Tκ with valence κ.

Let κ ě 3 be any cardinal. There exists an incomplete R-tree Sκ with valence κ and a free
transitive action G ñ Sκ, for some group G, if and only if κ is either infinite or even. If κ
is finite and even, then this action is unique: if S is an R-tree with valence κ, and H ñ S
is a free transitive action of a group H, then there is a group isomorphism G Ñ H and an
isometry Sκ Ñ S which is equivariant relative to G Ñ H.

4.1 The initial construction

We first construct a family of groups acting freely and transitively on complete real trees with
large valence. The groups we construct to prove Theorem 4.1 will be subgroups of these.

Let α : R Ñ R be the order reversing automorphism of R defined by αpλq “ ´λ for all
λ P R. Let X be a set equipped with an action of R ¸α x˚y, where ˚ is an element of order
two. We will abuse notation and identify R with the normal subgroup pR, idq ⊴ R ¸α x˚y.

Given ℓ P R such that ℓ ě 0 and a map f : r0, ℓs Ñ X, let f˚ :“ ˚ ˝ f . The length of f is
ℓ and is denoted by ℓpfq :“ ℓ.

Definition 4.3 (Equivalence, length, identity). Two maps f : r0, ℓpfqs Ñ X, g : r0, ℓpgqs Ñ X
are equivalent, denoted f » g, if ℓpfq “ ℓpgq and |ts : fpsq ‰ gpsqu| ď ℵ0. The equivalence
class of a function f is denoted by f. The length of f is ℓpfq :“ ℓpfq.

The unique equivalence class with length 0 is denoted by id.
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Definition 4.4. Let YX denote the set of equivalence classes of maps r0, ℓs Ñ X. Define a
binary relation ĺ on YX by: f ĺ g if ℓpfq ď ℓpgq and, for all but countably many t P r0, ℓpfqs,
we have fptq “ gptq.

Lemma 4.5. pYX ,ĺq is a median semilattice with bottom element id.

Proof. It is immediate from the definition that ĺ is reflexive, antisymmetric and transitive
so pYX ,ĺq is a partially ordered set. It is also clear from the definition that id is a bottom
element. Let S Ď YX be a non-empty subset and let ℓ :“ inftℓpsq : s P Su and

m :“ suptλ P r0, ℓs : s|r0,λs » s1|r0,λs @ s P Su.

Let g :“ s|r0,ms for some s P S. Then the equivalence class g of g is independent of the choice
of s and g ĺ s1 for all s1 P S. Moreover if f P YX with f ĺ s for all s P S then the definition of
m implies that f ĺ g. Therefore g “

Ź

S is the meet of S and pYX ,ĺq is a meet semilattice.
Observe that, for any f P YX , the set tg P YX : g ĺ fu is totally ordered. It follows that,

for any f1, f2, f3 P YX , the set tfi ^ fj : i ‰ ju is totally ordered so, fk ^ fm “
Ž

tfi ^ fj : i ‰ ju
for some k ‰ m. Let g P YX be an arbitrary element. Then, for each i ‰ j, we have that
g ^ fi ^ fj ĺ g and g ^ fi ^ fj ĺ fi ^ fj ĺ fk ^ fm so

ł

tg ^ fi ^ fj : i ‰ ju ĺ g ^ fk ^ fm ĺ
ł

tg ^ fi ^ fj : i ‰ ju.

Thus
Ž

tg ^ fi ^ fju “ g ^ fk ^ fm and YX is median.

Definition 4.6. • Define ´1 : YX Ñ YX as follows. The ´1-image of f is the equivalence
class of the map f´1 : r0, ℓpfqs Ñ X defined by f´1ptq “ ´ℓpfq ¨ f˚pℓpfq ´ tq.

• Define ˝ : YX ˆYX Ñ YX as follows. Given f, g P YX , f ˝ g P YX is the equivalence class
of the map f ˝ g : r0, ℓpfq ` ℓpgqs Ñ X given by

f ˝ gptq “

#

fptq if t P r0, ℓpfqs;

´ℓpfq ¨ gpt´ ℓpfqq otherwise.

• Let TX Ď YX be the set of admissible elements of YX .

Lemma 4.7. pYX ,ĺ, id,´1, ˝q is an ore.

Proof. (O1) and (O4) were proven in Lemma 4.5 and, for all f P YX ´ tidu, we have fK “ tidu

so (O5) and (O6) are trivially satisfied. It remains to check (O2) and (O3).

(O2) Let f, g, h P YX . Then ℓppf ˝ gq ˝ hq “ ℓpfq ` ℓpgq ` ℓphq “ ℓpf ˝ pg ˝ hqq. Moreover for all
t P r0, ℓpfq ` ℓpgq ` ℓphqs we have

pf ˝ gq ˝ hptq “

$

’

&

’

%

fptq if t P r0, ℓpfqs

´ℓpfq ¨ gpt´ ℓpfqq if t P pℓpfq, ℓpfq ` ℓpgqs

´pℓpfq ` ℓpgqq ¨ hpt´ pℓpfq ` ℓpgqqq otherwise

“ f ˝ pg ˝ hqptq.
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Thus ˝ is associative. Clearly id is a two-sided identity for ˝, so pYX , ˝, idq is a monoid.

Let f, g, h P YX and suppose that f ˝ g “ f ˝ h. Then clearly ℓpgq “ ℓphq and, for all
but countably many t P pℓpfq, ℓpgqs, we have ´ℓpfq ¨ gpt ´ ℓpfqq “ ´ℓpfq ¨ hpt ´ ℓpfqq, so
gptq “ hptq for all but countably many t P r0, ℓpgqs, which means that g “ h. Similarly,
if f ˝ g “ h ˝ g then ℓpfq “ ℓphq and for all but countably many t P r0, ℓpfqs we have
fptq “ hptq, so f “ h. Thus YX is cancellative.

Let f P YX . Then for all t P r0, ℓpfqs we have

pf´1q´1ptq “ ´ℓpfq ¨ p´ℓpfq ¨ f˚pℓpfq ´ pℓpfq ´ tqqq˚ “ ´ℓpfq ¨ pℓpfq ¨ fptqq “ fptq.

Therefore pf´1q´1 “ f and ´1 : YX Ñ YX is an involution. Let f, g P YX . Then
ℓppf ˝ gq´1q “ ℓpf ˝ gq “ ℓpfq ` ℓpgq “ ℓpg ˝ fq and for all t P r0, ℓpfq ` ℓpgqs we have

pf ˝ gq´1ptq “ ´pℓpfq ` ℓpgqq ¨ pf ˝ gq˚pℓpfq ` ℓpgq ´ tq

“

#

´pℓpfq ` ℓpgqq ¨ p´ℓpfq ¨ gpℓpgq ´ tqq˚ if t P r0, ℓpgqq;

´pℓpfq ` ℓpgqq ¨ f˚pℓpfq ` ℓpgq ´ tq otherwise;

“

#

´ℓpgq ¨ g˚pℓpgq ´ tq if t P r0, ℓpgqq;

´ℓpgq ¨ p´ℓpfq ¨ f˚pℓpfq ´ pt´ ℓpgqqqq otherwise

“ g´1 ˝ f´1ptq, unless t “ ℓpgq.

Therefore pf ˝ gq´1 “ g´1 ˝ f´1. This completes the proof of (O2).

(O3) Let f, g P YX . It is clear from the definition of ˝ that if there exists h P YX such that
f “ g ˝ h then g ĺ f. Conversely suppose that g ĺ f. Define h : r0, ℓpfq ´ ℓpgqs Ñ X by
hptq “ ℓpgq ¨ fpt` ℓpgqq. Then f “ g ˝ h.

Let pTX , ‹q be the group extracted from YX and define d : TX ˆ TX Ñ R by dpf, gq “

ℓpf´1 ‹ gq.

Lemma 4.8. pTX , dq is a complete R-tree.

Proof. By Lemma 3.29, TX is a median metric space and it is clear from the construction that
TX is connected. For all f P YX ´ tidu, we have fK “ tidu, so Lemma 3.31 implies that TX
has rank 1. Thus TX is an R-tree by [Bow24, Lemma 15.1.2]; let us show that it is complete.
Let pfnqnPN Ď TX be a Cauchy sequence. Then the sequence pℓpfnqqnPN Ď R is Cauchy and
has a limit ℓ P R. Define a map f : r0, ℓs Ñ R as follows. If t ă ℓ then there exists Nt P N
such that, for all n ě Nt, we have ℓpfn ^ fNtq ą t. Let fptq “ fNtptq for all such t and let fpℓq
be arbitrary. Then fn Ñ f in TX .

Remark 4.9. If 2 ď |X| ď 2ℵ0 then the valence (and the cardinality) of TX is 22
ℵ0 .

The following characterisation of admissibility for elements of YX will be useful.

Lemma 4.10. Let ℓ ě 0 and f : r0, ℓs Ñ X be a map. The equivalence class of f is
admissible if and only if either ℓ “ 0 or, for each t P p0, ℓq and every non-degenerate interval
rt´s, t`ss Ď r0, ℓpfqs, there exist uncountably many 0 ă ε ă s such that f˚pt´εq ‰ 2t¨fpt`εq.
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4.2 Axes

Definition 4.11. Let G be a group acting by isometries on a metric space pY, dY q. An
axis in Y is an isometric embedding L : R Ñ Y such that the stabiliser StabGpLpRqq acts
coboundedly on LpRq. We will also call the image of such a map an axis.

Let X,R,YX , TX be as in Section 4.1.

Definition 4.12. An element f P YX is constant if there is a representative of f which is a
constant map. Given a constant element f P YX , we will always assume that the representative
f is a constant map. The image of f is the image of f .

Lemma 4.13. Let x P X be such that x and x˚ are in different R-orbits. Then every constant
element with image x is admissible.

Proof. Let f : r0, ℓs Ñ X be a constant map to x P X and suppose that f is inadmissible.
Then, by Lemma 4.10, there exists λ P r0, ℓs and s ą 0 such that rλ ´ s, λ ` ss Ď r0, ℓs and
for uncountably many 0 ă ε ă s we have f˚pλ´ εq “ 2λ ¨ fpλ` εq. But then x˚ “ 2λ ¨ x.

Definition 4.14. Let x P X be such that x and x˚ are in different R-orbits. Define a subspace

Lx :“ tf P TX : fptq “ x @ t P r0, ℓpfqsu.

The x-axis of TX is the subspace Lx :“ Lx YLx˚ . A subspace L Ď TX is a standard axis if it
is an x-axis for some x P X such that StabRpxq is non-trivial and x˚ R R ¨ x.

The lemma below follows immediately from the relevant definitions.

Lemma 4.15. Let x P X be such that x and x˚ are in different R-orbits. Then

StabTX
pLxq “ tf P Lx : ℓpfq P StabRpxqu – StabRpxq.

Moreover, if φ : Lx Ñ R is the map defined by φpfq “ ℓpfq if f P Lx and φpfq “ ´ℓpfq
otherwise, then φ is a StabTX

pLXq-equivariant isometry.

Corollary 4.16. Standard axes in TX are axes in the sense of Definition 4.11.

Remark 4.17. Clearly ‘most’ lines in TX will have trivial stabilisers. Moreover it is not difficult
to construct non-standard axes with cyclic stabilisers and even such that the generator of the
stabiliser acts on its axis with arbitrary translation length.

A more surprising observation is that it is also possible for a non-standard axis of TX to
have a dense stabiliser. Suppose that, for some uncountable proper subgroup H ň R and
x, y P X, the orbits R ¨x,R ¨x˚,R ¨y,R ¨y˚ are pairwise disjoint and StabRpxq “ StabRpyq “ H.
Let L Ď TX be the set of elements of the form f : r0, ℓs Ñ X such that fptq “ x if t P H and
fptq “ y otherwise and let L :“ LYL˚. The fact that H is uncountable implies that L is not
standard, yet StabTX

pLq “ tf P L : ℓpfq P Hu – H. This behaviour will disappear when we
pass to more sensible subgroups of TX .
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4.3 Templates

We can now introduce the subgroup of TX which will be used to prove Theorem 4.1.
Let S Ď TX be a set. The closed subgroup xSy generated by S is the smallest closed

subgroup of TX containing S, with respect to the topology induced by the metric d.

Lemma 4.18. Let S Ď TX be a symmetric set which is closed under restriction (i.e. s´1 P S
for all s P S and, if the equivalence class of s : r0, ℓs Ñ X is in S, then the equivalence class
of the restriction s|r0,ts is in S for all t P r0, ℓs). Then xSy and xSy are connected.

Proof. Let H ď TX be a subgroup and f, g P H be elements which are connected to id via
paths γf, γg : r0, 1s Ñ H. Then the composition f ‹ γg is a path from f to f ‹ g and the
concatenation of γf with f ‹ γg is a path from id to f ‹ g. It follows that xSy is connected.
Now suppose that pfnqnPN Ď H is a sequence which converges to f P H such that each fn is
connected to id via a path in H. Then we can assume without loss of generality that fn ĺ fn`1

for all n P N and fix geodesics γn : r0, ℓpfnqs Ñ H connecting id to fn. Let γpℓpfqq “ f and, if
0 ď t ă ℓpfq, let γptq “ γnptq for some (equivalently any) n P N such that ℓpfnq ą t. Then
γ : r0, ℓpfqs Ñ H is a path connecting id to f. It follows that xSy is connected.

Definition 4.19. Given a subset Y Ď X, let TXpY q :“ xSy, where S “ YyPY Ly.

We will show that TXpY q is the universal real tree with valence 2ℵ0 whenever 2 ď |R ¨Y | ď

2ℵ0 . To do this, we will first characterise the elements of TXpY q using templates. We start by
showing that TXpY q “ TXpR ¨ Y q “ TXpY ˚q “ TXpR ¨ Y ˚q.

Lemma 4.20. Let Y Ď X be non-empty and suppose that StabRpyq ‰ t0u and y˚ R R ¨ y for
all y P Y . If H ď TX is a closed subgroup containing Ly for each y P Y , then H contains
Lλ¨y and Lλ¨y˚ for each λ P R.

Proof. Fix y P Y and, for each ℓ ą 0, let fℓ P Ly denote the constant element with length
ℓ and image y. Suppose s P StabRpyq and s ą 0. Then f´1

s P H has length s and f´1
s ptq “

p´sq¨y˚ “ ps¨yq˚ “ y˚ for any t P r0, ss. Given any ℓ ą 0 let s, t ě 0 be such that s P StabRpyq

and ℓ “ s ´ t. Then f´1
s ‹ ft “ f˚ℓ P Ly˚ so Ly˚ Ď H. Now let λ P R and suppose that λ ě 0.

For each ℓ ě 0, let gℓ :“ f´1
λ ‹ fλ`ℓ. Since fλ`ℓ “ fλ ˝ λ ¨ fℓ, the element gℓ P H has length ℓ

and gℓptq “ λ ¨ y for all t P r0, λs. Thus Lλ¨y Ď H. Suppose that λ ă 0. For any ℓ ą 0, if
g1
ℓ :“ pf˚´λq´1 ‹ f˚ℓ´λ then g1

ℓ has length ℓ and g1
ℓptq “ p´λq ¨ y˚ “ pλ ¨ yq˚. Thus Lpλ¨yq˚ Ď H

and by the argument above this implies that Lλ¨y Ď H.

Definition 4.21 (Templates). Let ℓ P R with ℓ ě 0. A countable set P Ď r0, ℓs is a template
of r0, ℓs if it satisfies the following.

(T1) If p P P and p ą 0 then there exist p1 P P – called the predecessor of p – such that
p1 ă p and P X pp1, pq “ H. If p P P and p ă ℓ then there exists p2 P P – called the
successor of p – such that p ă p2 and P X pp, p2q “ H.

(T2) The union Ytrp, p1s : p, p1 P P and P X pp, p1q “ Hu has countable complement in r0, ℓs.

Given a template P Ď r0, ℓs, the inverse of P is the template P´1 :“ tℓ´ p : p P P u.
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Note that (T2) implies that every point in the complement is an accumulation point of P
and that the closure P is countable.

Let ℓ ě 0 and P Ď r0, ℓs be a template. There are two related but slightly different ways
of “filling in” a template to produce an element of YX or TX . In the first version, a sequence
of elements of X, indexed by P , directly defines a map. In the second, the input is a suitable
sequence of elements of YX , also indexed by P , and the map they define should be viewed as
an infinite concatenation (so the action of R must be taken into account).

Definition 4.22 (Realising sequences). (i) Let pxpqpPP be a sequence in X. The reali-
sation of pxpqpPP is the equivalence class of any function f : r0, ℓs Ñ X such that
fptq “ xp if t P pp, p1q for some p, p1 P P such that P X pp, p1q “ H. We say that pxpqpPP

is admissible if f P TX .

(ii) A sequence pfpqpPP Ď YX is consistent if the following holds. For each p P P ´ tℓu,
if p1 P P is the successor of p, then ℓpfpq “ p1 ´ p and if ℓ P P then fℓ “ id. The
concatenation of pfpqpPP is the equivalence class of any function f : r0, ℓs Ñ X such that
fptq “ ´p ¨ fppt ´ pq if t P pp, p1q for some p, p1 P P such that P X pp, p1q “ H. We say
that pfpqpPP is admissible if f P TX .

Definition 4.23 (Template ore). Let ZX be the set of realisations of sequences pxpqpPP Ď X,
where P Ď r0, ℓs is a template and ℓ ě 0. The set ZX Ď YX is called the template ore over X.

One checks easily that ZX is closed under the operations ˝ and ´1, and under the relation
ĺ. Moreover the element id is the realisation of any sequence px0q so id P Z. Therefore the
following lemma follows immediately from Lemma 4.7.

Lemma 4.24. pZX ,ĺ, id, ˝,´1q is an ore.

Definition 4.25 (Complexity). Given f P ZX , the complexity of f is the smallest countable
ordinal α such that f is the realisation of a sequence in X indexed over a template P whose

closure has CB-rank α. For each countable ordinal α, we denote by Zrαs

X the set of elements
of ZX with complexity ď α.

Remark 4.26. The closure of a template is a countable compact Polish space, so its CB-rank
is a successor ordinal (see Remark 2.17). Therefore the complexity of an element of ZX is
always a successor ordinal. We will use this liberally from now on.

Lemma 4.27 (Inversion). Let f P ZX be the realisation (resp. concatenation) of a sequence
in X (resp. in YX) indexed over a template P Ď r0, ℓpfqs. Then f´1 is the realisation (resp.
concatenation) of a sequence in X (resp. in YX) indexed over P´1.

Proof. Let pxpqpPP Ď X be a sequence with realisation f. For each p1 “ ℓ´ q P P´1 ´ tℓu, let
p P P be the predecessor of q P P , and let zp1 :“ ´ℓ ¨ x˚

p . If ℓ P P´1 then let zℓ P X be an
arbitrary element. Then f´1 is the realisation of pzp1qp1PP´1 .

Let pfpqpPP Ď YX be a consistent sequence with realisation f. For each p1 “ ℓ ´ q P

P´1 ´ tℓu, where q P P is the successor of p P P , let gp1 – f´1
p . If ℓ P P´1 then let gℓ :“ id.

Then f´1 is the realisation of pgp1qp1PP´1 .

Lemma 4.28 (Refining). Let P Ď r0, ℓs be a template, let pxpqpPP Ď X be a sequence and let
pfpqpPP Ď TX be consistent. For any t P r0, ℓs, there exists a template Q Ď r0, ℓs, a sequence
pzqqqPQ Ď X and a consistent sequence pgqqqPQ Ď TX such that:
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• t is an accumulation point of Q (in particular, t R Q);

• Q´Q “ pP ´ P q Y ttu;

• the realisation of pzqqqPQ is equivalent to the realisation of pxpqpPP ;

• the concatenation of pgqqqPQ is equivalent to the concatenation of pfpqpPP .

The process of replacing P with Q and either replacing pxpqpPP with pzqqqPQ or pfpqpPP

with pgqqqPQ is called refining. The fact that P ´ P Ď Q´Q ensures that, by repeating this
process a finite number of times, P can be refined to admit any finite set of points in r0, ℓs as
accumulation points.

Proof. Suppose that t is not an accumulation point of P and t R t0, ℓu. Then there exists
p1, p2 P P such that p1 ă t ă p2 and P X pp1, p2q Ď ttu. Let ptnqnPN Ď pp1, tq be a strictly
increasing sequence which converges towards t, let psnqnPN Ď pt, p2q be a strictly decreasing
sequence which converge towards t and let Q :“ pP ´ ttuq Y ttn, sn : n P Nu. Then Q is a
template with non-trivial accumulation point t and BQ “ BP Y ttu.

For each p P P ´ttu let zp :“ xp and for each n P N let ztn :“ xp1 and zsn :“ xt if t P P and
zsn :“ xp1 otherwise. Then the realisation of pzqqqPQ is equivalent to the realisation of pxpqpPP .
For each p P P ´ tp1, tu let gp :“ fp. Let gp1 :“ fp1 |r0,t1´p1s and let gs1 : r0, p2 ´ s1s Ñ X be
defined by gs1psq “ ps1´tq¨ftps`s1´tq if t P P and gs1psq “ ps1´p1q¨fp1pt`s1´p1q otherwise.
For each n P N let gtn : r0, tn`1 ´ tns Ñ X be defined by gtnpsq “ ptn ´ p1q ¨ fp1ps ` tn ´ p1q

and, if n ě 2, let gsn : r0, sn´1 ´ sns Ñ X be defined by gsnpsq “ psn ´ tq ¨ ftps ` sn ´ tq if
t P P and gsnpsq “ psn ´ p1q ¨ fp1ps ` sn ´ p1q otherwise. Then pgqqqPQ is consistent and its
concatenation is equivalent to the concatenation of pfpqpPP .

If t “ 0 or ℓ then perform the above operation but only on one side of t.

Proposition 4.29. Let Y Ď X be such that StabRpyq ‰ t0u and y˚ R R ¨ y for all y P Y .
Then TXpY q is the set of realisations of admissible sequences pypqpPP in R ¨ pY Y Y ˚q, where
P is a template.

Proof. We start by showing that the set of all such realisations is a closed subgroup. Lemma 4.27
implies that it is closed under taking inverses. Let ℓ, ℓ1 ą 0, let P Ď r0, ℓs, P 1 Ď r0, ℓ1s be tem-
plates and let pypqpPP , py

1
p1qp1PP 1 Ď R ¨ pY Y Y ˚q be admissible sequences with realisations f, f1

respectively. Let τ :“ ℓpf ´ pf´1 ^ f1q´1q. By refining P, P 1 and pypqpPP , py
1
p1qp1PP 1 if necessary,

we can assume that τ is a non-trivial accumulation point of P and ℓ´ τ is a non-trivial accu-
mulation point of P 1. Let P 2 :“ pP Xr0, τ sqYprℓ´τ, ℓpf‹f1qsXtp1 ´ℓ`2τ : p1 P P 1uq. Then P 2

is a template of r0, ℓpf‹ f1qs. For each p P P XP 2, let xp :“ yp and for each p1 ´ ℓ`2τ P P 2 ´P
let xp1´ℓ`2τ :“ pℓ´2τq ¨y1

p1 . Then pxp2qp2PP 2 is admissible and the realisation of this sequence
is f ‹ f1.

Observation 1. If f, g P TX are such that g ĺ f and f is the realisation of a sequence pxpqpPP Ď

R ¨ pY Y Y ˚q, where P Ď r0, ℓpfqs is a template, then g is the realisation of a sequence in
R ¨ pY Y Y ˚q indexed over a template. Indeed, up to refining P and pxpqpPP , we can assume
that ℓpgq P P . Let P 1 :“ tp P P : p ď ℓpgqu. Then g is the realisation of pxpqpPP 1 .

Now let pfnqnPN Ď TX be a sequence converging to a point f P TX such that, for each
n, if ℓn :“ ℓpfnq then there is a template Pn Ď r0, ℓns and an admissible sequence ypnq “

py
pnq
p qpPPn Ď R ¨ pY Y Y ˚q such that fn is the realisation of ypnq. If ℓ :“ ℓpfq then pℓnqnPN
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converges to ℓ. Take a subsequence of pfnqnPN so that pℓnqnPN is either strictly increasing or
strictly decreasing. If pℓnqnPN is strictly decreasing then f ĺ fn for almost all n, so f is the
realisation of some sequence in R ¨ pY Y Y ˚q by Observation 1. So suppose that pℓnqnPN is
strictly increasing. By Observation 1 again, we can replace each fn with a ĺ-smaller element
so that fn ĺ fn`1 for each n. For each n P N, refine Pn and ypnq finitely many times so that
ℓm is a limit point of Pn for all m ď n. Define

P :“
ď

nPN
Pn X pℓn´1, ℓnq.

Then P is a template of r0, ℓs. For each n P N and each p P P X pℓn´1, ℓnq let zp :“ y
pnq
p . Then

pzpqpPP is an admissible sequence whose realisation is f.
By Lemma 4.20, the fact that all realisations of admissible sequences in R ¨ pY Y Y ˚q are

in TXpY q follows from Lemma 4.30 below.

Lemma 4.30. Let H ď TX be a closed subgroup. Let ℓ ą 0 and let P Ď r0, ℓs be a tem-
plate. Suppose that phpqpPP Ď H is a consistent and admissible sequence and let f be the
concatenation of phpqpPP . Then f P H.

Proof. We prove the lemma by transfinite induction on the Cantor–Bendixson rank α of P .
If α “ 1, then P is a compact set of isolated points and is therefore finite. Therefore f is

a finite concatenation of elements in H and is itself in H.
Suppose that α ą 1 and recall that α “ β ` 1 for some countable ordinal β ě 1. Let

K :“ P
pβq

. Then K is a compact set of isolated points so K is finite. Let k0, . . . , km be the
elements of K Y t0, ℓu, ordered such that 0 “ k0 ă k1 ă ¨ ¨ ¨ ă km “ ℓ. For each 0 ď i ă m
choose a point k`

i “ k´
i`1 P pki, ki`1q X P (this exists by (T2) because K X P “ H). Let

f`
ki

: r0, k`
i ´ kis Ñ X be defined by f`

ki
ptq “ ki ¨ fpt` kiq and let f´

ki`1
: r0, ki`1 ´ k´

i`1s Ñ X

be defined by f´
ki`1

ptq “ k´
i`1 ¨ fpt ` k´

i`1q. If f´ki , f
`
ki`1

P H for each 0 ď i ă m then

f “ f`k0 ‹ f´k1 ‹ f`k1 ‹ ¨ ¨ ¨ ‹ f`km´1
‹ f´km P H. It therefore remains to show that f´ki , f

`
ki`1

are indeed
elements of H for each i.

Fix k P tki : 0 ă i ď mu and let Q :“ tp ´ k´ : p P P X rk´, kqu. Then Q is a template
of r0, k ´ k´s and 0 P Q. If k “ ℓ and ℓ R K then the CB-rank of Q is at most β and f´k
is the concatenation of phpqp´k´PQ so f´k P H by the induction hypothesis. So assume that

k P K. Then Q
pβq

“ tk ´ k´u and there exists a strictly increasing sequence pqnqnPN Ď Q
which converges towards k ´ k´ (because β ě 1). For each n, let Qn :“ Q X r0, qns, let βn
be the CB-rank of Qn and let gn :“ f´

k |r0,qns. Then Qn is a template of r0, qns, βn ď β and
gn is the concatenation of phpqp´k´PQn

. By the induction hypothesis, gn P H for each n.
Moreover pgnqnPN converges towards f´k so f´k P H. By a similar argument pf`k q´1 P H for all
k P tki : 0 ď i ă mu and therefore f`k P H for all such k.

Proposition 4.31. Let Y Ď X be such that each y P Y has a non-trivial R-stabiliser and
y˚ R R ¨ y for all y P Y . Suppose that |Y | ď 2ℵ0 and there exist y1, y2 P Y such that y1 ‰ y2
and y1 R R ¨ y˚

2 . Then pTXpY q, dq is the universal R-tree with valence 2ℵ0.

Proof. By Lemmas 4.8 and 4.18, TXpY q is a closed connected subspace of a complete R-tree,
so it is itself a complete R-tree. Since the action of TXpY q on itself is transitive, it suffices
to check that the valence of TXpY q at id is 2ℵ0 . Let κ denote the valence of TXpY q at id.
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Two elements f, g P TXpY q lie in the same connected component of TXpY q ´ tidu if and only
if there exists ε ą 0 such that fptq “ gptq for all but countably many t P r0, εs. Let ℓ P R,
ℓ ą 0 and let P “ tpn P p0, ℓs : n P Nu be a template of r0, ℓs such that pn Ñ 0. For each
subset Ω Ď N let xΩ “ pxΩpnqpnPP Ď X where xΩpn “ y1 if n P Ω and xΩpn “ y2 otherwise. It

follows from Lemmas 4.10 and 4.13, and the assumptions on y1, y2, that the sequence xΩ and
its realisation fΩ are admissible. Moreover, if Ω,Ω1 Ď N and the symmetric difference Ω∆Ω1

is infinite then fΩ and fΩ1 lie in different connected components of TXpY q ´ tidu. Therefore
κ ě t0, 1uN{ „, where Ω „ Ω1 if and only if |Ω∆Ω1| ă 8. Each equivalence class of subsets
has cardinality ℵ0 so this implies that κ ě 2ℵ0 . Conversely, Proposition 4.29 implies that
cardinality of TXpY q is bounded above by that of C ˆ pR ¨ pY Y Y ˚qq, where C is the set of
countable subsets of R. Thus κ ď |TXpY q| ď 2ℵ0 .

We can now prove that the only lines in TXpY q which can have dense stabilisers are
translates of standard axes.

Lemma 4.32. Let Y Ď X be such that each y P Y has a non-trivial R-stabiliser and y˚ R R ¨y
for all y P Y . Let L Ď TXpY q be a line such that StabGpLq acts on L with dense orbits. Then
L “ f ‹ L1 for some f P TXpY q and some standard axis L1 Ď TXpY q.

Proof. Up to translating by an element of TXpY q, we can assume that L intersects the identity.
Let f P L be a non-trivial element and let P Ď r0, ℓpfqs be a template such that f is the
realisation of a sequence in X indexed by P . Up to translating by an element of TXpY q, we
can assume that P can be chosen so that 0 P P . Let p P P be the successor of 0 and let x P Y
be such that fptq “ x for all but countably many t P r0, ps. The assumption on the stabiliser
subgroup of L implies that there exists id ň g ň f such that g P StabTXpY qpLq. Therefore
g ˝ f1 P L, where f 1 :“ f |r0,ps. Now g ˝ f1 “ h where hpr0, ℓpgqsq “ x and hprℓpgq, ℓpgq ` psq “

´ℓpgq ¨ x. But since h P L and g ĺ f, we have f ĺ h therefore for all but countably many
t P rℓpgq, ℓpfqs we have ´ℓpgq ¨ x “ fptq “ x. Thus h is constant with image x. It follows
by induction that gn ˝ f P L is constant with image x for all n P N. In particular, each gn is
constant with image x and ℓpgq P StabRpxq so it follows that each g´n is constant with image
x˚. Thus L “ Lx Y Lx˚ .

4.4 Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.1. Fix an arbitrary map ι : SubNCpRq Ñ K. If ι is the zero map then let
X0 :“ R{Z \ pR{Zq1, equipped with the natural action of R and the involution px ` Zq˚ “

p´x ` Zq1, px` Zq1˚ “ ´x ` Z for all x P R. This defines an action of R ¸α x˚y on X. Let
G :“ TX0pX0q and recall that, by Proposition 4.31, pG, dq is the complete universal real tree
with valence 2ℵ0 . By Lemma 4.32, all the stabilisers of lines in TX0pX0q are either trivial or
cyclic so the action of TX0pX0q on itself by left multiplication satisfies the conclusion of the
theorem. If ι is the characteristic map of R then let X1 :“ X0 \ tx, x1u, where X0 is equipped
with the same action of R¸α x˚y as before, R acts on tx, x1u trivially and x˚ :“ x1, px1q˚ :“ x.
Let G :“ TX1pX1q and note that pG, dq is again the complete universal real tree with valence
2ℵ0 . Then by Lemma 4.32 the only orbit of lines with non-trivial and non-cyclic stabilisers is
the orbit of the standard axis Lx. It follows that |AH | “ |tG ¨Lxu| “ 1 if H “ R and |AH | “ 0
otherwise. Thus we can (and do) assume that ι is not the zero map or the characteristic map
of R.
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For each subgroup H P SubNCpRq let BH :“ R{H \ pR{Hq1 and define an action of
R ¸ x˚y on BH as follows. If r P R and x ` H P R{H then r ¨ px ` Hq :“ r ` x ` H,
r ¨ px ` Hq1 “ pr ` x ` Hq1, and px ` Hq˚ :“ p´x ` Hq1, px`Hq1˚ :“ ´x ` H. Let XH

be the disjoint union of ιpHq copies of BH and let X :“ \tXH : H P SubNCpRqu. Since
ř

HPSubNCpRq ιpHq ď 2ℵ0 , we have |X| ď 2ℵ0 .
Let G :“ TXpXq. By Proposition 4.31 pG, dq is the complete universal real tree with

valence 2ℵ0 . Let H P SubNCpRq. If L Ď G is a line whose orbit is an element of AH then
Lemma 4.32 implies that L “ f ‹ L1 for some f P G and some standard axis L1. Lemma 4.20
implies that, if y, y1 P Y and y1 P R ¨ty, y˚u, then Ly,Ly1 are in the same G-orbit and it is clear
from the definition of the operation on G that, if y1 R R ¨ ty, y˚u, then Ly,Ly1 are in different
G-orbits. By Lemma 4.15, if y P Y then G ¨ Ly P AH if and only StabRpyq “ H. Therefore
|AH | is equal to the number of copies of BH in XH , which is ιpHq by construction.

To prove Theorem 4.2 we will need two more lemmas:

Lemma 4.33. Let T be a real tree and let G be a group acting freely on T . Let L Ď T be
a line such that StabGpLq acts on L with dense orbits. Then, for all g P G, the intersection
gLX L is either empty, a point or a line.

Proof. Let M Ď T be a line, let φ : M Ñ R be an isometry and let y :“ φ´1p0q. We will
say that the explicit stabiliser of M is K :“ φpStabGpMq ¨ yq ď R. Note that K does not
depend on the choice of φ. It follows from the freeness of the action that, for any g P G and
x P M , we have g P StabGpMq if and only if gx P M and dpx, gxq P K. Moreover, if g P G
then φ ˝ g´1 : gM Ñ R is an isometry, pφ ˝ g´1q´1p0q “ gy and φ ˝ g´1pStabGpgMq ¨ gyq “

φpStabGpMq ¨ yq “ K, so K is an invariant of G ¨M .
Let H ď R be the explicit stabiliser of L. Let g P G be such that |gL X L| ą 1. The

intersection L X gL is closed and connected so this implies that there is a non-degenerate
segment rx, ys Ď L X gL. By assumption, there exists h P StabGpLq such that hx P rx, ys.
Then hx P gL and dpx, gxq P H so h P StabGpLq X StabGpgLq. If z P rx, ys is such that
dpz, yq ă dpx, hxq then hz P L X gL and hz R rx, ys. This argument applies to any non-
degenerate segment rx, ys Ď L X gL, so L X gL has infinite length. Since the action of G is
free, LX gL cannot be a ray, so we must have that LX gL “ L.

Given a group G acting freely and transitively on an R-tree T , we establish the following
convention. Identify G with T via an orbit map g ÞÑ g ¨ x0 for some x0 P T and equip G with
the partial order defined by g ĺ f if rid, gs Ď rid, f s. Note that pG,ĺq is a meet semilattice
and g ^ f ‰ id if and only if f and g are in the same direction at id. For all g P G define
ℓpgq :“ dpid, gq, where d is the metric on T .

Lemma 4.34. Let κ ď 2ℵ0 be a cardinal. Let T be a real tree which is not a single point and
such that there is a group G acting freely and transitively on T . If, for any line L Ď T , we
have |StabGpLqzL| ě κ, then the valence of T is ě κ.

Proof. We first assume that the G-stabiliser of every line in T is at most countable.

Claim 1. Let f P G be non-trivial and, for each g ă f , let hg :“ g´1f ^ f . Then, for all but
countably many g ă f , we have hg “ id.
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Proof. Let A Ď G be the set of g ă f such that hg ‰ id and suppose that A is uncountable.
For each n P N, let An :“ tg P A : ℓphgq ě 1{nu. Then A “ YnPNAn so there is some n for
which An is uncountable. Since rid, f s is a finite union of segments of length ď 1{2n, there
exists a segment I Ď rid, f s with length ď 1{2n such that P :“ An X I is uncountable. We
can moreover assume, up to taking a subsegment with the same property, that I “ rp1, p2s

for some p1, p2 P rid, f s such that p1, p2 P An. Let k :“ p´1
1 p2. Then k ĺ hp for all p P P so

pk ĺ f . In particular, p1k
2 ĺ f and p1k ĺ f which implies that k ^ k´1 “ id. Let L Ď G be

the convex hull of xky and note that L is a line. For every p P P we have p1 ĺ pk ĺ p1k
2 and

it follows that p´1
1 p stabilises L, but there are uncountably many such elements. ■

Let Gf :“ tg P G : g ĺ fu and define an equivalence relation „ on Gf by: g „ g1 if

g´1f ^ g1´1f ‰ id. If g „ g1 and g ă g1 ă f then g´1g1 ĺ g´1f and pg´1g1q´1g´1f ^

g´1f “ g1´1f ^ g´1f ‰ id. By Claim 1, there are at most countably many such elements
g´1g1 ĺ g´1f . It follows that equivalence classes of Gf are at most countable, which implies
that |Gf{ „ | “ 2ℵ0 , and thus the valence of T is ě 2ℵ0 .

Now assume T has valence ă 2ℵ0 . By the above argument, there is a line L Ď T whose
stabiliser is uncountable. Up to translating L by some element of G, we can assume that
id P L. The orbit StabGpLq ¨x is dense in L for any x P L so, by Lemma 4.33, for any f, g P G,
the intersection fL X gL is either empty, a single point or a line. Therefore, if f, g P L and
f´1 ^ g´1 ‰ id, then f´1L “ g´1L so fg´1 P StabGpLq. By assumption |StabGpLqzL| ě κ
so this implies that the valence of T is bounded below by κ.

Proof of Theorem 4.2. Let κ ě 4 be a cardinal which is either infinite or even. Let Iκ be a
set with cardinality κ{2 and let Xκ :“ txi, x

˚
i : i P Iκu, equipped with the trivial action of R

and the involution ˚ : xi ÞÑ x˚
i , x

˚
i ÞÑ xi. Let Hκ ď TXκpXκq be the subgroup of complexity 1

elements of TXκpXκq. Then Hκ is an incomplete real tree and the set of directions at id is in
bijection with X.

Next, fix a cardinal 3 ď κ ă 2ℵ0 and suppose there exists a real tree T with valence κ and
a group G which admits a free transitive action on T .

Suppose T is complete. We will show that κ ě 2ℵ0 , leading to a contradiction. We will
need to construct a set ta1,n, a2,n P G : n P Ru such that ℓpai,nq ď 1{n2 for all n and, for all
n,m P N, we have a´1

1,n ^ a1,m “ a´1
1,n ^ a2,m “ a2,n ^ a´1

2,m “ id. To this end, we first show
that there exist lines L1, L2 Ď T such that L1 X L2 “ tidu and the actions StabGpLiq ñ Li

have dense orbits.
By Lemma 4.34, there exists a line L1 Ď T with uncountable, and therefore dense, sta-

biliser. Up to translating by an element of G, we can assume that id P L1. If the stabiliser
of L1 is not transitive, let g P L1 ´ StabGpL1q and L2 :“ g´1L1. Then L2 ‰ L1 and id P L2

so by Lemma 4.33 L1 X L2 “ tidu. If StabGpL1q is transitive then StabGpL1q “ L1. Let
H Ď G be the set of elements g P G such that the segment rid, gs does not intersect any
translate of L1 in a non-degenerate segment. If g, h P H, then rid, ghs “ rid, g1s Y g1 ¨ rh1, hs

for some g1 ĺ g and h1 ĺ h. For all k P G we have rid, g1s X kL1 Ď rid, gs X kL1 and
g1 ¨ rh1, hs X kL1 Ď g1 ¨ prid, hs X g1´1kL1q so |rid, ghs X kL1| ď 1 and gh P H. Also
rid, g´1s X kL1 “ g´1 ¨ prid, gs X gkL1q which has cardinality at most 1 so g´1 P H. Thus H is
a subgroup of G. It is clear from the definition that H is a subtree of G. It follows from the
fact that StabGpL1q “ L1 that H is non-trivial – more precisely, the valence of H is κ ´ 2.
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Thus by Lemma 4.34 there is a line L2 Ď H containing id such that StabHpL2q “ StabGpL2q

acts on L2 with dense stabilisers.
Now fix rays L`

i Ď Li based at id for each i. For each n P N, let a1,n P L`
1 X

StabGpL1q, a2,n P L`
2 X StabGpL2q be such that 0 ă ℓpa1,nq ă ℓpa2,nq ď 1{n2. Then for

all n,m P N, a´1
1,n, a

´1
1,m P L1 ´ L`

1 and a´1
2,n, a

´1
2,m P L2 ´ L`

2 so

a´1
1,n ^ a1,m “ a´1

2,n ^ a´1
2,m “ a´1

1,n ^ a2,m “ a´1
2,n ^ a1,m “ id .

Given a map θ : N Ñ t1, 2u, define gθn :“ aθp1q,1 . . . aθpnq,n. The way we chose the a1,i’s and

a2,i’s implies that ℓpgθnq “
řn

i“1 ℓpaθpiq,iq, g
θ
n ă gθn`1 and pℓpgθnqqnPN is convergent, so pgθnqnPN

is Cauchy and has a limit gθ P G. It also follows from the choice of a1,i’s and a2,i’s that, if
θ ‰ θ1, then pgθq´1 ^ pgθ

1

q´1 “ id which means that T has at least 2ℵ0 directions at id.
Finally, suppose that κ is finite. By Lemma 4.34, there is a line L Ď T such that

| StabGpLqzL| ď κ. The additive group R has no finite index subgroups, so this implies
that StabGpLq acts transitively on L. We assume without loss of generality that id P L and
note that L “ StabGpLq in this case. Let H Ď G be the set of elements g P G such that the
segment rid, gs does not intersect any translate of L1 in a non-degenerate segment. Recall
that H is a subgroup of G and a subtree with valence κ ´ 2. It follows by induction on κ
that κ is even and there are lines L1, . . . , Lκ{2 Ď T such that Li X Lj “ tidu for all i ‰ j and
StabGpLiq “ Li for all i.

To prove the uniqueness statement, recall the definition of the group Hκ from the first
paragraph of this proof. For each i P t1, . . . , κ{2u fix an isometry ψ : Lxi Ñ Li such that
ψipidq “ id. These extend to an isometric and homomorphic embedding ψ : Hκ Ñ T .

It remains to show that ψ is surjective. Let p P T be in the closure of ψpHκq and let
phnqnPN Ď ψpHκq be a sequence with limit p. Since ψpHκq is connected, we can assume
without loss of generality that hn ĺ hn`1 for all n P N. Each p´1hn lies in the same direction
at id and ℓpp´1hnq Ñ 0. Therefore there exists i P t1, . . . , κ{2u such that , for sufficiently
large n, we have p´1hn P Li Ď ψpHκq. Thus p P ψpHκq and ψpHκq is closed. Now suppose
there exists p P T ´ψpHκq and let p1 P ψpHκq be the closest point projection of p onto ψpHκq.
Then rp1, ps XψpHκq “ tp1u, so p lies in a different direction at p1 to any point of ψpHκq. But
since the valence of Hκ is κ, this implies that the valence of p1 in T is ě κ ` 1, which is a
contradiction.

Remark 4.35. Let κ ě 4 be a cardinal which is not both finite and odd, and let Hκ be the
group defined at the start of the above proof. Then Hκ is isomorphic to the free product of
κ copies of R and the action of Hκ on itself is precisely the action constructed in [CM12] for
free products of copies of R.

For each i P Iκ, let Ri “ R. Let ˚IκRi be the free product of tRi : i P Iκu. Recall that,
for each i P Iκ, since StabHκpLxiq “ Lxi , the map Lxi Ñ Ri which maps f P Lxi to ℓpfq if the
image of f is xi, and maps f to ´ℓpfq otherwise, is an isomorphism. The group Hκ is generated
by YiPIκLxi , so these isomorphisms extend to an isomorphism ψ : Hκ Ñ ˚IκRi. Moreover,
length function ℓ˝ψ´1 : ˚IκRi Ñ R is precisely the Lyndon length function defined in [CM12]
to construct a free transitive action on an R-tree. It follows that the resulting free transitive
actions are isomorphic.

If κ “ 2ℵ0 then Hκ ñ Hκ is also isomorphic to the free transitive action on Uryson’s tree
constructed in [Ber89, Ber19].
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4.5 Reduction retraction

Suppose that x˚ R R ¨ x and StabRpxq is non-trivial for all x P X.

Proposition 4.36. There exists a retraction : ZX Ñ TXpXq such that pf ˝ gq “ pf ˝

g q “ f ‹ g and pf´1q “ f
´1

for all f, g P ZX .

Let us start with some terminology.

Definition 4.37 (Reducible at t). Let ℓ ą 0 and Q Ď r0, ℓs be a finite template. Let
pfqqqPQ Ď TX be a consistent sequence with concatenation f. We say that f is reducible at
t if there exists t1, t2 P Q with t1 ă t ă t2 such that Q X pt1, t2q “ ttu and there exists
0 ă s ď mintt ´ t1, t2 ´ tu such that for all but countably many 0 ď ε ď s we have
f´1
t1

pεq “ ftpεq.

Remark 4.38. If f is the concatenation of another finite sequence pf1q1qq1PQ1 Ď TX then t P Q1

and f is also reducible at t with respect to pf1q1qq1PQ1 . Thus reducibility at t is well-defined.

We now define reduction of a finite sequence of elements of TX .

Definition 4.39 (Reduction of a finite sequence at t). Let ℓ ą 0 and Q Ď r0, ℓs be a finite
template. Let pfqqqPQ Ď TX be a consistent but inadmissible sequence with concatenation f
and suppose that f is reducible at t P Q. Let t1 be the predecessor of t and t2 be its successor.
Let σ ą 0 be the maximal 0 ă s ď mintt ´ t1, t2 ´ tu such that f˚

t1pt ´ t1 ´ εq “ 2t ¨ ftpεq
for all but countably many 0 ď ε ď s. Let Qt :“ Q Y tt ´ σ, t ` σu and define a sequence
pftqqqPQt Ď TX as follows:

• if q ă t1 or q ě t2, then f
t
q :“ fq;

• if t1 ‰ t´ σ, then f tt1 :“ ft1 |r0,t´t1´σs;

• f tt´σ : r0, σs Ñ X is defined by f tt´σpuq “ pt´ σq ¨ ft1pu` t´ t1 ´ σq;

• f tt :“ ft|r0,σs;

• if t` σ ‰ t2, then f
t
t`σ : r0, t2 ´ t´ σs Ñ X is defined by f tt`σpuq “ σ ¨ ftpu` σq.

Observe that the concatenation of pftqqqPQt is f. Now define

Qt :“ tq P Qt : q ď t´ σu Y tq ´ 2σ : q P Qt, q ě t` σu

and note that Qt is a finite template of r0, ℓ´ 2σs. Define rQ,t : Q
t ´ ttu Ñ Qt by rQ,tpqq “ q

if q ď t´ σ and rQ,tpqq “ q ´ 2σ otherwise.

Given q P Qt let f
ptq
q :“ ftq if q ă t´σ and f

ptq
q “ ftq`2σ otherwise. The reduction redpf, Q, tq

of pf, Qq at t is the concatenation of pf
ptq
q qqPQt .

Remark 4.40. By the maximality of σ, if t ´ σ ‰ t1 and t ` σ ‰ t2 then fptq is not reducible
at t ´ σ. This implies that the number of points at which redpf, Q, tq is reducible is strictly
smaller than the number of points at which f is reducible.
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Lemma 4.41. Suppose that ℓ,Q, pfqqqPQ and f are as in Definition 4.39 and that f is reducible
at the points s, t P Q. Let U be the template and pguquPU be the sequence obtained by first
reducing f at s then at rQ,sptq and let V be the template and phvqvPV be the sequence obtained
by reducing f first at t then at rQ,tpsq. Then U “ V and pguquPU “ phvqvPV .

Proof. Relabel s and t if necessary so that s ă t and let s1, s2 P Qs, t1, t2 P Qt be such that
s1 ă s2, t1 ă t2, Q

s X ps1, s2q “ tsu and Qt X pt1, t2q “ ttu. Let σ :“ s ´ s1 “ s2 ´ s and
τ :“ t ´ t1 “ t2 ´ t. First suppose that s2 ď t1. It is clear from the definition that the
reduction of x at s is reducible at rQ,sptq and similarly the reduction of x at t is reducible at
rQ,tpsq. Since the collapsed intervals are disjoint, it is clear that U “ V and pguquPU “ phvqvPV

in this case.
So suppose that t1 ă s2. In this case s1 ď s ď t1 ă s2 ď t ď t2. Let σ1 :“ t1 ´ s and

τ 1 :“ t´ s2. Then

U “ tp P Q : p ď s1u Y tp´ 2pσ ` τ 1q : p P Q, p ě t2u

“ tp P Q : p ď s1u Y tp´ 2pt´ sq : p P Q, p ě t2u

and

V “ tp P Q : p ď s´ σ1u Y tp´ 2pτ ` σ1q : p P Q, p ě t2u

“ tp P Q : p ď s´ σ1u Y tp´ 2pt´ sq : p P Q, p ě t2u.

Since t2 ´ 2pσ ` τ 1q “ s´ σ1, we indeed have U “ V .
Let s1

1 P Q be such that s1
1 ă s and QX ps1

1, sq “ H and let t12 P Q be such that t ă t12 and
QXpt, t12q “ H. For each p ă s1

1, gp “ fp “ hp. Also if s1 ‰ s1
1 then gs1

1
“ pfs1

1
q|r0,s1´s1

1s “ hs1
1
.

We have gs1 : r0, τ´τ 1s Ñ X is given by gs1prq “ pt`τ 1q¨fpr`t`τ 1q and hs1 : r0, σ´σ1s Ñ X
is given by hs1prq “ s1 ¨ fpr ` s1q. Note that τ ´ τ 1 “ σ ´ σ1 and t is the successor of s in Q.
By assumption, pfss1q´1 “ fss and pftt1q´1 “ ftt. Therefore, for all r P r0, σ ´ σ1s,

s1 ¨ fpr ` s1q “ fss1prq “ pfss q´1prq “ ´σ ¨ ps ¨ fps` pσ ´ rqqq˚ “ ´s2 ¨ f˚ps2 ´ rq

and

pt` τ 1q ¨ fpr ` t` τ 1q “ τ 1 ¨ f tt pr ` τ 1q

“ τ 1 ¨ pf tt1q´1pr ` τ 1q

“ pτ 1 ´ τq ¨ pt1 ¨ fpt´ pr ` τ 1qqq˚

“ ´s2 ¨ f˚ps2 ´ rq

Lastly, for all p P Q with p ě t12, we have gp´2pt´sq “ fp “ hp´2pt´sq and, if t2 ‰ t12, then
gt2 , ht2 : r0, t12 ´ t2s Ñ X are defined by gt2prq “ ht2prq “ ftpr ` τq.

Combining Lemma 4.41 with Remark 4.40, the following is well-defined.

Definition 4.42 (Reduction of a finite sequence). Let ℓ ą 0, let Q Ď r0, ℓs be a finite template
and let pfqqqPQ be a consistent sequence with concatenation f. If f is reducible at t P Q then
reduce it at t. If redpf, Q, tq is reducible at t1 P Qt then reduce it at t1. Iterating this procedure,
we eventually obtain an admissible element fQ, which we call the reduction of f with respect
to Q.
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Lemma 4.43. Suppose that m ą 0 and Q “ tqn : n P Nu Ď r0,ms is a template such that
qn ă qn`1 for each n P N. In particular, m is the unique accumulation point of Q. For each
n, let Qn :“ tqi : 1 ď i ď nu. Let pfqqqPQ Ď TX be a sequence and for each n, let gn be the
concatenation of pfqqqPQn. Then ppgnqQqnPN Ď TXpXq is Cauchy.

Proof. Observe that dppgn`1qQ, pgnqQq ď 2pqn`1 ´ qnq Ñ 0 as n Ñ 8.

Definition 4.44 (Reduction of a Cauchy sequence). Let m,Q, pfqqqPQ, pgnqnPN be as in
Lemma 4.43 and let f be the concatenation of pfqqqPQ. The reduction of f with respect
to Q, denoted fQ, is the limit of the Cauchy sequence ppgnqQqnPN.

Proof of Proposition 4.36. Let us define : ZX Ñ TXpXq. Let f P ZX be an element with
complexity α. We proceed by transfinite induction on α.

First suppose that α “ 1 and fix a sequence x “ pxpqpPP Ď X such that f is its realisation.
Since P is finite, we can (and do) assume that it is minimal among the set of templates for
f. For each p P P ´ tℓu, let p1 P P be the successor of p and define fp : r0, p1 ´ ps Ñ X by
fpptq “ p ¨ xp for all t. Let fℓ :“ id. Then f is the concatenation of pfpqpPP . The reduction of f
is f :“ fP in the sense of Definition 4.42.

So suppose that α “ β`1 for some countable ordinal β and suppose that, for any g P Zrβs

X

(recall Definition 4.25), the reduction g of g has been defined in such a way that it depends
only on g. Suppose moreover that the following holds.

(C) Let m ą 0, let Q Ď r0,ms be a template such that Qpβq “ m and fix a sequence
y “ pyqqqPQ Ď X. Let tqn : n P Nu Ď Q be such that qn ă qn`1 for each n P N,
so that pqnqnPN is a strictly increasing sequence with limit m. For each n P N let
Qn :“ tq P Q : q ď qnu and let gn be the realisation of pyqqqPQn . Then pgn qnPN is
Cauchy.

(F) If f, g P Zrβs

X then pf ˝ gq “ f ‹ g .

(I) If f P Zrβs

X then pf´1q “ f
´1

.

In the case where β “ 1, Property (C) holds by Lemma 4.43 and Property (F) holds by
Lemma 4.41. To check Property (I) in this case, recall that f´1 is the realisation of the
sequence p´ℓ ¨ y˚

p qpPP´1 , where P´1 :“ tℓ ´ p : p P P u and yp “ ´ℓ ¨ x˚
p1 where p1 P P is the

predecessor of ℓ´ p P P . Property (I) therefore follows from Definition 4.42.
Now let f P ZX be an element with complexity α. Let ℓ :“ ℓpfq, let P Ď r0, ℓs be a template

and pxpqpPP Ď X be a sequence with realisation f. Suppose moreover that P
pβq

Ď Q
pβq

for
any template Q which indexes a sequence in X with realisation f. Note that this property

renders P
pβq

unique (although P itself may not be). Since the complexity of f is α, P
pβq

is
finite.

If P
pβq

“ tℓu, then let tqn : n P Nu Ď P be such that qn ă qn`1 for each n P N, so that
pqnqnPN is a strictly increasing sequence with limit ℓ. For each n P N let Pn :“ tp P P : p ď pnu

and let fn P Zrβs be the realisation of pxpqpPPn . By Item (C), the sequence pfn qnPN is Cauchy.
Let f P TXpXq be the limit of pfn qnPN.

If P
pβq

“ t0u then let f :“ pf´1 q´1.
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Now suppose that P
pβq

“ t0, ℓu. Choose a point t P P and let P´
t :“ tp P P : p ď tu

and P`
t :“ tp ´ t : p P P and p ě tu. Then P´

t and P`
t are templates of r0, ts and r0, ℓ ´ ts

respectively. For each p P P´
t let x´

p :“ xp and for each p P P`
t let x`

p :“ t ¨ xp`t. Let f´t , f
`
t

be the realisations of px´
p qpPP´

t
and px`

p qpPP`
t

respectively. Then let ft be the reduction of

f´t ˝ f`t with respect to the template t0, t, ℓu.

Claim 1. If t, t1 P P then ft “ ft1 .

Proof. Relabel t and t1 if necessary so that t ă t1. Let Prt,t1s :“ tp ´ t : p P P, t ď p ď t1u

and note that Prt,t1s is a template of r0, t1 ´ ts whose closure has CB-rank ď β. Let f
rt,t1s

denote the reduction of the realisation of pxp`tqpPPrt,t1s
and let Q :“ t0, t1, t, ℓu. It follows from

the definition that f`t “ pfrt,t1s ˝ f`t1 qQ and f´t1 “ pf´1
rt,t1s

q ˝ ftqQ. Therefore ft is obtained from

pf´t q´1˝frt,t1s ˝f`t1 by first reducing at t1 then at rP,t1ptq and ft1 is obtained from pf´t q´1˝frt,t1s ˝f`t1

by first reducing at t then at rP,tpt
1q. Thus ft “ ft1 by Lemma 4.41. ■

The reduction of f is f :“ ft for any t P P rβs such that if s P P with s ă t and
P X ps, tq “ H then xs ‰ xt. In particular any template for f contains t so the definition of
f does not depend on P .

In the general case, let b0, . . . , bm P r0, ℓs be such that b0 ă ¨ ¨ ¨ ă bm and P
pβq

Y t0, ℓu “

tb1, . . . , bmu. For each i P t0, . . . ,m ´ 1u, let Pi :“ tp ´ bi : p P P, bi ď p ď bi`1u and
fbi : r0, bi`1 ´ bis Ñ X be defined by fbiptq “ fpt` biq. For each such i, the reduction fbi has

been defined. Moreover f “ f0 ˝ . . . ˝ fm, so let f be the reduction of the consistent sequence
pfbiqiPt1,...,m´1u with respect to the finite template tb0, . . . , bmu Ď r0, ℓs. The reduction of f is
well-defined by Lemma 4.41 and the uniqueness of tb0, . . . , bmu while Property (C) holds by
Lemma 4.43. Property (F) is checked in the claim below. Property (I) follows immediately
from the construction.

Claim 2. Let f, g P Zrαs

X . Then pf ˝ gq “ pf ˝ g q “ f ‹ g .

Proof. If the complexities of both f and g are strictly less than α, then the claim follows by
the induction hypothesis. So suppose that at least one of f, g has complexity α.

Let ℓ :“ ℓpfq,m :“ ℓpgq and let P Ď r0, ℓs, Q P r0,ms be templates which can index

sequences whose realisations are f and g respectively. Suppose moreover that P
pβq

Ď P 1
pβq

for

any template P 1 which indexes a sequence in X with realisation f, and similarly Q
pβq

Ď Q1
pβq

for any template Q1 which indexes a sequence in X with realisation g.

If ℓ P P
pβq

or 0 P Q
pβq

then, by definition, pf ˝ gq “ pf ˝ g q “ f ‹ g . So suppose

that ℓ R P
pβq

and 0 R Q
pβq

. Let p :“ maxP
pβq

Y t0u and q :“ minQ
pβq

Y tℓpgqu and let
f 1 :“ f |r0,ps and g

1 :“ q ¨ g|rq,ℓpgqs. Let h1, h2 P TXpXq be such that f “ f1 ˝ h1 and g “ h2 ˝ g1,
so f ˝ g “ f1 ˝ h1 ˝ h2 ˝ g1. Then, using the induction hypothesis and Lemma 4.43, we have
ph1 ˝ h2q “ ph1 ˝ h2 q. Therefore

pf ˝ g q “ ppf1 ˝ h1 q ˝ ph2 ˝ g1 q q

“ pf1 ˝ ph1 ˝ h2 q ˝ g1 q

“ pf1 ˝ ph1 ˝ h2q ˝ g1 q

“ pf ˝ gq .
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The first and last inequalities follow from the definition of reduction and the second follows
from Lemma 4.41. ■

This completes the proof of the proposition.

5 Actions on Λ-trees

Some of the ideas from the previous section can also be used to construct actions on Λ-trees
for arbitrary totally ordered abelian groups Λ. Since we do not assume that Λ is uncountable
or that every bounded set in Λ has a supremum, the exact analogue of the construction does
not work. On the other hand, the notion of completeness is no longer very relevant in this
context so there is no need for the more involved notion of templates introduced in Section 4.3
to ensure completeness. The group we obtain will be an analogue of the subgroup of TXpXq

consisting of elements with complexity 1.
As before, the construction allows for flexibility with respect to the stabilisers of ‘lines’.

To illustrate this, we will prove the following proposition.

Proposition 5.1. Let Λ be a totally ordered abelian group, let H ď Λ be any subgroup and
let κ “ 2|Λ{H|. Then there exists a group G acting freely and transitively on a Λ-tree T
with valence κ such that there exists a subspace L Ď T and isometry φ : L Ñ Λ (where Λ
is equipped with the Λ-metric dpλ1, λ2q “ |λ1 ´ λ2|) such that φpStabGpLq ¨ xq “ H, where
x “ φ´1p0q. In particular StabGpLq – H.

Let α : Λ Ñ Λ be the order reversing automorphism of Λ defined by αpλq “ ´λ for all
λ P Λ. Let X be a set equipped with an action of Λ ¸α x˚y, where ˚ is an element of order
two. We will abuse notation and identify Λ with the normal subgroup pΛ, idq ⊴ Λ ¸α x˚y.

Definition 5.2. Let YX denote the set of maps f : p0, ℓs Ñ X, where ℓ P Λ with ℓ ě 0, such
that, for some k P N Y t0u and some finite sequence 0 “ p0 ă ¨ ¨ ¨ ă pk “ ℓ, the map f if
constant on each interval ppi, pi`1s. When ℓ “ 0, f is necessarily the empty map, which we
denote by id : H Ñ X. The length of f : p0, ℓs Ñ X is ℓpfq :“ ℓ.

Remark 5.3. We can define templates for intervals in Λ in analogy with the notion for intervals
in R (see Definition 4.21). Then the set P :“ tp0, . . . , pku in the above definition is just a
finite template for the interval r0, ℓs and f is the realisation of a sequence pxpqpPP Ď X.

Definition 5.4. Fix f, g P YX .

• Define f´1 : p0, ℓpfqs Ñ X as follows. Let tp0, . . . , pku Ď r0, ℓs be a template for f and
for each i P t0, . . . , k ´ 1u and t P ppi, pi`1s let f´1ptq “ ´ℓpfq ¨ f˚ppi`1q.

• Define f ˝ g : p0, ℓpfq ` ℓpgqs Ñ X by

f ˝ gptq “

#

fptq if t P p0, ℓpfqs;

´ℓpfq ¨ gpt´ ℓpfqq otherwise.

• We say that f ĺ g if f is a restriction of g.

Lemma 5.5. pYX ,ĺ, id, ˝q is an ore.
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Proof. It is straightforward to see that pY,ĺ, idq is a median semilattice. The rest of the proof
is completely analogous to that of Lemma 4.7.

Let pSX , ‹q be the group extracted from YX .

Lemma 5.6. The map ℓ : YX Ñ Λ is a Λ-length function (Definition 3.28). If d is the
resulting Λ-metric on SX then pSX , dq is a Λ-tree.

If x and x˚ are in different Λ-orbits for all x P X then the valence of SX is the cardinality
of X.

Proof. It is clear from the definition that ℓ is a Λ-length function. By Proposition 3.29 pSX , dq

is a median Λ-metric space. For any f P SX ´ tidu we have fK “ tidu so SX has rank 1 by
Lemma 3.31. For any f P SX , the map t P r0, ℓpfqs ÞÑ f |p0,ts P SX is a geodesic from id to f .
Therefore SX is a Λ-tree by Lemma 2.11.

Fix an element λ P Λ with λ ą 0. If x and x˚ are in different Λ-orbits then the constant
map fx : p0, λs Ñ X with image x is admissible (by a similar argument to the proof of
Lemma 4.13). Assume that x and x˚ are in different Λ-orbits for all x P X. For all x ‰ y
we have fx ^ fy “ id and for any g P SX there is some x such that fx ^ g ą id, so the set of
directions at id is in bijection with X.

Proof of Proposition 5.1. Let X :“ pΛ{Hq \ pΛ{Hq1 equipped with the obvious Λ-action and
define ˚ : X Ñ X by pλ ` Hq˚ “ p´λ ` Hq1 and pλ`Hq1˚ “ ´λ ` H for all x ` H P Λ{H.
This defines an action of Λ ¸α x˚y on X. Let pSX , ‹q be the resulting group, equipped with
its canonical Λ-metric d. Then SX is a Λ-tree with valence |X| “ 2|Λ{H|. Moreover, for each
x P X, there is subspace Lx :“ tf P SX : f is constant with image x or x˚u and the map
φ : Lx Ñ Λ, defined by φpfq “ ℓpfq if the image of f is x and φpfq “ ´ℓpfq otherwise, is an
isometry. Then, φpStabSX

pLxq ¨ idq “ H so this completes the proof.

Remark 5.7 (2-torsion). If Λ is not 2-divisible then SX can contain some order 2 elements
which act by inversions (i.e. fixed point free order two isometries). Suppose that λ P Λ is
such that 2λ1 ‰ λ for all λ1 P Λ and let X :“ Λ{xλy, equipped with the natural action of Λ
and the involution pt ` xλyq˚ “ ´t ` xλy. Let SX be the resulting group and Λ-tree. Let
f : p0, λs Ñ X be the constant map with image x – 0 ` xλy. If f “ a ˝ b ˝ b´1 ˝ c then
2ℓpbq P xλy but since 0 ď ℓpbq ă λ and λ is not 2-divisible this can only happen if b “ id. So
f P SX and f´1 is constant with image ´λ ¨ x “ x, so f´1 “ f .

The only fixed point free isometries of Λ-trees are inversions and hyperbolic isometries
(which have infinite order) so the only finite order elements in any SX have order 2. Moreover
SX can only contain inversions if Λ is not 2-divisible [Chi01, Lemma 3.1.2, Theorem 5.1.4].

6 Actions on products of R-trees

In this section, we present two distinct ways constructions of free transitive actions on ℓ1

products of R-trees. In Subsection 6.1, we extend the ideas of Subsection 4.1 to produce
groups which act on products of R-trees with arbitrary flat stabilisers. To illustrate the
flexibility of this construction, we will prove a variant of Theorem 4.1 (Theorem 6.1). After
establishing some facts about reducible actions on products of R-trees in Subsection 6.2, we
will use the construction from Subsection 6.1 to prove the existence of a free transitive and
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irreducible action on a product of two R-trees in Subsection 6.3. In Subsection 6.4, we present
an entirely different construction which allows one to isometrically embed any BMW group
with a positive BMW presentation into a free dense action on a product of two R-trees.

6.1 Actions with prescribed flat stabilisers

Let N P tNu Y tt1, . . . , nu : n P Nu, let R :“ ℓ1pNq be equipped with its natural additive
group structure, and, for each n P N , let χn P R be the characteristic map of n.

Recall that K is the set of cardinals κ such that κ ď 2ℵ0 and let SubDpRq be the set of
dense subgroups H ď R. Let SubDpRq be the quotient of SubDpRq under linear isometries
and denote the equivalence class of each H P SubDpRq by rHs.

Theorem 6.1. Let ι : SubDpRq Ñ K and η : N Ñ t0, 1u be arbitrary maps such that η
is non-zero and ι is supported on ď 2ℵ0 elements of SubDpRq. For each n P N such that
ηpnq “ 1, let Tn be the universal real tree with valence 2ℵ0 and, for all n P N such that
ηpnq “ 0, let Tn :“ R. Let T :“ pTnqnPN . Then there exists a group G which acts freely and
transitively on the ℓ1 product ℓ1pT , zq, for some z P

ś

nPN Tn, such that the following holds.
For each rHs P SubDpRq, let AH be the set of G-orbits of maximal flats F Ď S such that
StabGpF q ñ F is isomorphic to H ñ R. Then |AH | “ ιprHsq.

For each n P N , let Xn be a set equipped with an action of R and let Yn :“ Xn \ X˚
n ,

where X˚
n is a copy of Xn and ˚ : Xn Ñ X˚

n is a bijection. For each x˚ P X˚
n , let px˚

nq˚ :“ xn,
so ˚ : Yn Ñ Yn is an involution. For each x˚

n P X˚
n and r P R, let r ¨ x˚

n :“ pr ¨ xnq˚.

Remark 6.2. This setup is not quite analogous to that of Section 4: we have an action of
R ˆ x˚y on Yn rather than an action of R ¸α x˚y, where α : R Ñ R is the order reversing
automorphism given by αprq “ ´r for all r P R.

Recall that, for each n, ZYn denotes the set of equivalence classes of realisations of se-
quences pxpqpPP Ď Yn, where P Ď r0, ℓs is a template and ℓ ą 0 (see Section 4.3).

Definition 6.3. Let F :“ tf “ pfnqnPN P
ś

nPN ZYn :
ř

nPN ℓpfnq ă 8u. For each n P N , let
ℓnpfq :“ ℓpfnq. Let opfq :“ pℓnpfqqnPN P R; we call opfq the outline of f. Let id P F be the
unique element with outline 0.

Set f ĺ g if and only if fn ĺ gn for all n P N .

Definition 6.4 (Signed length, signed outline). Given n P N and f P ZYn , let P Ď r0, ℓpfqs

be a template and pxpqpPP be a sequence with realisation f. For each p P P ´ tℓu, let p1 P P
be the successor of p. Define:

ℓ`pfq :“
ÿ

tp1 ´ p : p P P ´ tℓu and xp P Xnu

ℓ´pfq :“
ÿ

tp1 ´ p : p P P ´ tℓu and xp P X˚
nu

The signed length of f is σpfq :“ ℓ`pfq ´ ℓ´pfq P R.
If f “ pfnqnPN P F then the signed outline of f is τpfq :“ pσpfnqqnPN P R.

Definition 6.5. • Given f P F , let f´1 :“ pf´1
n qnPN , where f´1

n : r0, ℓnpfqs Ñ Xn is defined
by f´1

n ptq “ ´τpfq ¨ f˚
n pℓnpfq ´ tq for each n.
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• Define an operation ˝ : F ˆ F Ñ F as follows. Let f, g P F and, for each n, let
an : r0, ℓnpfq ` ℓnpgqs Ñ Xn be the map given by

anptq “

#

fnptq if t P r0, ℓnpfqs;

τpfq ¨ gnpt´ ℓnpfqq otherwise.

and let an P YXn be the equivalence class of an. Define f ˝ g :“ panqnPN .

Remark 6.6. If f “ pfnqnPN , g “ pgnqnPN P F , then τpf ˝ gq “ τpfq ` τpτpfq ¨ gq “ τpfq ` τpgq,
since Xn and X˚

n are R-invariant for all n P N .

Remark 6.7. If f “ pfnqnPN P F then τpf´1q “ τpf˚q “ ´τpfq.

Lemma 6.8. pF , ˝q is a cancellative monoid with identity id and with involution ´1.

Proof. Given f, g, h P F , we have oppf ˝ gq ˝ hq “ opfq ` opgq ` ophq “ opf ˝ pg ˝ hqq. Using
Remark 6.6, we have that, for each n P N and t P r0, ℓnpfq ` ℓnpgq ` ℓnphqs:

ppf ˝ gq ˝ hqnptq “

$

’

&

’

%

fnptq if t P r0, ℓnpfqs;

τpfq ¨ gnpt´ ℓnpfqq if t P pℓnpfq, ℓnpgqs;

pτpfq ` τpgqq ¨ hpt´ ℓnpfq ´ ℓnpgqq otherwise

“ pf ˝ pg ˝ hqqnptq.

Therefore ppf˝gq˝hqn “ pf˝pg˝hqqn for each n P N , which implies that pf ˝ gq ˝ h “ f ˝ pg ˝ hq.
Thus ˝ is associative. It is clear from the definitions that id is a two-sided identity for ˝, so
pF , ˝q is a monoid.

Let f P F . Then pf´1q´1 “ panqnPN has outline opfq. Using Remark 6.7, we have that, for
each n P N and t P r0, ℓnpfqs,

anptq “ ´τpf´1q ¨ p´τpfq ¨ f˚
n pℓnpfq ´ pℓnpfq ´ tqqq˚ “ τpfq ¨ p´τpfq ¨ fnptqq “ fnptq.

Therefore pf´1q´1 “ f and ´1 : F Ñ F is an involution. Fix f, g P F . Then pf˝gq´1 “ panqnPN ,
where for each i, an : r0, ℓnpfq ` ℓnpgqs Ñ Xn is defined by

anptq “ ´τpf ˝ gq ¨ pf ˝ gq˚
npℓnpfq ` ℓnpgq ´ tq

“

#

´pτpfq ` τpgqq ¨ pτpfq ¨ gnpℓnpgq ´ tqq˚ if t P r0, ℓnpgqq;

´pτpfq ` τpgqq ¨ f˚
n pℓnpfq ´ pt´ ℓnpgqqq otherwise

“

#

g´1
n ptq if t P r0, ℓnpgqq;

τpg´1q ¨ f´1
n pt´ ℓnpgqq otherwise

“ pg´1 ˝ f´1qn, unless t “ ℓnpgq.

Therefore pf ˝ gq´1 “ g´1 ˝ f´1.
Finally, let f, g, h P F and suppose that f ˝ g “ f ˝ h. Then opgq “ ophq and, for each n and

for all but countably many t P r0, ℓnpgqs “ r0, ℓnphqs, we have that τpfq ¨ gnptq “ τpfq ¨ hnptq
so gnptq “ hnptq. Therefore g “ h. It is clear that if f ˝ g “ h ˝ g then f “ h, so pF ,ĺq is
cancellative.
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Lemma 6.9. If f P F is admissible and r P R, then the equivalence class r ¨ f of pr ¨ fnqnPN

is admissible.

Proof. Suppose a, b, c P F are such that r¨f “ a˝b˝b´1˝c. SinceXn andX˚
n areR-invariant for

each n P N , we have τpgq “ τp´r¨gq for all g P F . It follows that f “ ´r¨a˝´r¨b˝´r¨b´1˝´r¨c.
But p´r ¨ bq´1 “ panqnPN where, for each n P N and t P r0, ℓnpbqs,

anptq “ ´τp´r ¨ bq ¨ p´r ¨ bnpℓnpbq ´ tqq˚

“ p´τpbq ´ rq ¨ b˚
npℓnpbq ´ tq

“ ´r ¨ b´1
n ptq.

Thus p´r ¨ bq´1 “ ´r ¨ b and, since f is admissible, this implies that b “ id.

Lemma 6.10. (F ,ĺ, id, ˝,´1q is an ore.

Proof. (O2) holds by Lemma 6.8. Let us go through the remaining axioms.

(O1) This follows from the fact that pYXi ,ĺq is a median semilattice for each i (by Lemma 4.5).

(O3) Let f, g P F . It is clear from the definition of ˝ that, if there exists h P F such
that f “ g ˝ h, then g ĺ f. Conversely, suppose that g ĺ f. For each n P N define
hn : r0, ℓnpfq ´ ℓnpgqs Ñ X by hptq :“ ´τpgq ¨ fpt` ℓnpgqq. Then f “ g ˝ h.

(O4) By Lemma 4.5, each pYXn ,ĺq is a median semilattice. Let mn : Y3
Xn

Ñ YXn be the
median map from Theorem 3.5. For each f, g, h P F let mpf, g, hq :“ pmnpfn, gn, hnqqnPN .
One can check that mpf, g, hq “ pf ^ gq _ pg ^ hq _ pf ^ hq. Let x “ pxnqnPN P F . Then
mpx ^ f, x ^ g, x ^ hq “ pmnpxn ^ fn, xn ^ gn, xn ^ hnqqnPN “ pxn ^ mnpfn, gn, hnqqnPN “

x ^mpf, g, hq.

(O5) Let f, g, h P F and suppose that f, g are admissible, f K h and f _ h “ f ˝ g. Let
If :“ tn P N : ℓnpfq ą 0u and Ih :“ tn P N : ℓnphq ą 0u. Then If X Ih “ H and f _ h “ a
where an “ fn if n P If, an “ hn if n P Ih and an : t0u Ñ Xn is any map of length
0 otherwise. Therefore, up to choosing a different representative for g, we have that
h “ τpfq ¨ g. By Remark 6.9, h is admissible.

(O6) Let f, g P F be admissible and orthogonal. Let If :“ tn P N : ℓnpfq ą 0u and Ig –

tn P N : ℓnpgq ą 0u. Then If X Ig “ H and f _ g “ h where hn “ fn if n P If ,
hn “ gn if n P Ig and hn : t0u Ñ Xn is any map of length 0 otherwise. It follows that
f_ g “ f ˝ ´τpfq ¨ g “ g ˝ ´τpgq ¨ f. By Remark 6.9, ´τpfq ¨ g and ´τpgq ¨ f are admissible.
Also, f´1 _ ´τpfq ¨ g “ f´1 ˝ g “ ´τpfq ¨ g ˝ ´τpgq ¨ f´1 the fact that If X Ig “ H implies
that f´1 K ´τpfq ¨ g and g´1 K ´τpgq ¨ f.

Definition 6.11. Let pG, ‹q be the group extracted from pF , ˝q.

Remark 6.12. Any element f P F such that each fn is constant is admissible and is therefore
an element of G. Indeed if f is inadmissible then the image of some fn must contain both some
x P Xn and an element in the orbit of x˚, which is contained in X˚

n , so fn is not constant.

Let ℓ : F Ñ R be the map defined by ℓpfq “
ř

nPN ℓnpfq. Then ℓ is a length function. Let d
be the resulting metric on G given by dpf, gq “ ℓpf´1 ‹gq for all f, g P G (see Proposition 3.29).

We will need a few lemmas to prove the following:
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Proposition 6.13. The metric space pG, dq is the ℓ1 product of |N | complete real trees, with
respect to some basepoint.

Definition 6.14. For each n P N , let Zn :“ tf P F : fi “ id @ i ‰ nu and let ψn : Zn Ñ ZYn

be the bijection given by ψnpfq “ fn for all f P Zn.
Let Tn :“ tfn P ZYn : ψ´1

n pfnq P Gu Ď ZYn for each n P N .

Lemma 6.15. 1. There is an operation ˝ and an involution ´1 on ZYn such that pZYn ,ĺ,
˝,´1, idq is an ore and Tn is its set of admissible elements.

2. Let pTn, ‹q be the group extracted from ZYn. Then ℓ is a length function on Tn and, if
dn is the metric on Tn given by dnpfn, gnq “ ℓnpf´1

n ‹ gnq for all fn, gn P Tn then pTn, dnq

is a complete real tree.

3. If |Xn| “ 1 then Tn is a line and if 2 ď |Xn| ď 2ℵ0 then Tn is the universal real tree
with valence 2ℵ0.

Proof. 1. Observe that Zn is invariant under ˝ and ´1 and that id P Zn. Also if g P F
and g ĺ f then g P Zn. Thus it follows from Lemma 6.10 that pZn,ĺ, ˝,´1, idq is an
ore. The bijection ψn then endows ZYn with the structure of an ore. By definition, the
set of admissible elements of ZYn is Tn.

2. It is immediate from the definition that ℓ is a length function on ZYn . Thus, by Propo-
sition 3.29, pTn, dnq is a median space. For all fn P Tn we have fKn “ tidu so, by
Lemma 3.31, Tn has rank 1. Given fn P Tn and t P r0, ℓpfnqs, let γptq :“ gn, where
gn “ fn|r0,ts. Then gn P Tn and γ : r0, ℓpfnqs Ñ Tn is a geodesic from id to fn. Therefore
Tn is an R-tree by Lemma 2.11.

The argument to show that Tn is complete is very similar to the argument showing that
TXpY q is closed in the proof of Proposition 4.29: Suppose that paiqiPN Ď Tn is a Cauchy
sequence and, for each i P N, let Pi Ď r0, ℓpaiqs be a template and papqpPPi Ď Yn be a
sequence with realisation ai. Since Tn is downward closed, we can assume that paiqiPN is
strictly increasing. Refine each Pi and papqpPPi using Lemma 4.28 so that ℓpai´1q, ℓpaiq P

Pi for each i P N, where a0 – idn. Then let P :“ YiPNpPi X rℓpai´1q, ℓpaiqsq, observe
that P is a template for r0, limiÑ8 ℓpaiqs, and let a P Zn be the equivalence class of
the sequence papqpPP . It follows from the admissibility of the ai’s that a P Tn. By
construction, paiqiPN converges to a.

3. Suppose that |Xn| “ 1 and let L :“ tfn P ZYn : fn is constantu. By Remark 6.12,
L Ď Tn and the fact that |Xn| “ 1 implies that L is isometric to R. Let ℓ ą 0, let
P Ď r0, ℓs be a template and let fn P ZYn be the realisation of a sequence pypqpPP Ď Yn.
Suppose the CB-rank of P is as small as possible. If fn is not constant then there exists
p1, p2 P P ´ tℓu such that p2 is the successor of p1 and either yp1 P Xn and yp2 P X˚

n

or yp1 P X˚
n and yp2 P Xn. In either case, this implies that f is inadmissible. Therefore

Tn “ L.

If 2 ď |Xn| ď 2ℵ0 then it follows by the same argument as the proof of Proposition 4.31
that Tn is the universal real tree with valence 2ℵ0 .

Lemma 6.16. Consider f “ pfnqnPN P F . Then f is admissible if and only if fn P Tn for each
n P N .
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Proof. Suppose f is admissible and there exists n P N such that fn “ an ˝ bn ˝ b´1
n ˝ cn for

some an, bn, cn P ZYn . For each i P N ´ tnu define ai :“ bi :“ id and ci :“ p´σpanqχnq ¨ fi. Let
a :“ paiqiPN , b :“ pbiqiPN and c :“ pciqiPN . Then f “ a ˝ b ˝ b´1 ˝ c, so bn “ id.

Conversely, suppose that fn P Tn for all n P N . Let a, b, c P F be such that f “ a˝b˝b´1˝c.
For each n P N , fn is the equivalence class of the map fn : r0, ℓnpfqs Ñ Yn given by:

fnptq “

$

’

’

’

’

&

’

’

’

’

%

anptq if t P r0, ℓpanqs;

τpaq ¨ bnpt´ ℓpanqq if t P pℓpanq, ℓpanq ` ℓpbnqs;

pτpaq ` τpbqq ¨ b´1
n pt´ ℓpanq ´ ℓpbnqq if t P pℓpanq ` ℓpbnq, ℓpanq ` 2ℓpbnqs;

τpaq ¨ cnpt´ ℓpanq ´ 2ℓpbnqq if t P pℓpanq ` 2ℓpbnq, ℓpfnqs

“

$

’

’

’

’

&

’

’

’

’

%

anptq if t P r0, ℓpanqs;

τpaq ¨ bnpt´ ℓpanqq if t P pℓpanq, ℓpanq ` ℓpbnqs;

τpaq ¨ b˚
np2ℓpbnq ´ t` ℓpanqq if t P pℓpanq ` ℓpbnq, ℓpanq ` 2ℓpbnqs;

τpaq ¨ cnpt´ ℓpanq ´ 2ℓpbnqq if t P pℓpanq ` 2ℓpbnq, ℓpfnqs

for all t P r0, ℓpfnqs. Let pτ P R be such that pτpnq “ τpaqpnq and pτpiq “ 0 if i ‰ n. Let pbn :“
pτ ¨bn P ZYn and pcn :“ pτ ¨cn P ZYn . Then

pb´1
n is the equivalence class of the map r0, ℓpbnqs Ñ Yn

given by t ÞÑ ppτ´τpψ´1
n ppbnqqq¨b˚

npℓpbnq´tq. It follows that an˝pbn˝ppbnq´1˝pcn “ fn. Therefore
pbn “ id which, by Remark 6.9, implies that bn “ id. As this holds for all n P N , we have that
b “ id and f is admissible.

Proof of Proposition 6.13. Let T :“ pTnqnPN . Lemma 6.16 implies that, as a set, G is the ℓ1

product ℓ1pT , idq. For all f, g P G we have dpf, gq “ ℓpf´1 ‹ gq “
ř

nPN dnpfn, gnq. Therefore
d is precisely the ℓ1 metric on G “ ℓ1pT , idq and, by Lemma 6.15, each Tn is a complete real
tree.

Definition 6.17. A standard flat in G is a maximal flat F Ď G of the form

F “ tf P G : fn is constant with image xn or x˚
n @ n P Nu,

for some pxnqnPN P
ś

nPN Xn. We denote F ppxnqnPN q :“ F .

The stabilisers of maximal flats are straightforward to describe:

Lemma 6.18. Let pxnqnPN P
ś

nPN Xn and let F :“ F ppxnqnPN q. Then

StabGpF q “ tf P F : τpfq P XnPN StabRpxnqu – XnPN StabRpxnq.

The restriction of τ to F is an isometry F Ñ R and the restriction τ |StabGpF q : StabGpF qq Ñ

XnPN StabRpxnq is an isomorphism.

Lemma 6.19. Let F Ď G be a maximal flat and let H ď R be such that StabGpF q ñ F is
isomorphic to H ñ R. If H is dense in R then F is a translate of a standard flat.

Proof. We can replace F by a G-translate so that id P F . Note that StabGpF q Ď F in this
case. Let f P StabGpF q be non-trivial. Up to translating F by another element of G, we can
assume that, for all n P N , there exists a non-trivial element f1n ĺ fn which is constant, say
with image yn P Yn.
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Let φ : F Ñ R be an isometry such that φpidq “ 0 and, for each n P N , we have
φ´1pR ¨ χnq “ Xi‰np

´1
i pidq.

Let E :“ φpStabGpF qq and note that E P rHs, so in particular E P SubDpRq. For each
n P N let pn : R Ñ R be the projection defined by pnpptiqiPN q “ tn. The image pnpEq is dense
in R for each n P N . Fix n P N and let g P StabGpF q be such that id ň gn ň f1n. Let h :“ g‹ f,
so for all but countably many t P r0, ℓpgnqs, hnptq “ gnptq “ yn and for all but countably many
t P pℓpgnq, ℓpgnq ` ℓpfnqs, hnptq “ τpgq ¨ yn. But h P F , gn ĺ h and ℓphnq ą ℓnpfnq so fn ĺ hn,
which implies that, for all but countably many t P rℓpgnq, ℓpfnqs, we have hnptq “ fnptq “ yn.
Therefore τpgq ¨ yn “ yn and hn is constant with image yn. It follows by induction on k P N
that the nth coordinate of gk ‹ f is constant with image yn. It follows that the nth coordinate
of gk is constant with image yn for all k and therefore the nth coordinate of g´k is constant
with image y˚

n. Thus, for all h P F , the element hn is constant with image yn or y˚
n. The same

argument holds for all n P N so we have shown that F “ F ppxnqnPN q, where, for each n P N ,
xn P Xn is such that yn “ xn or yn “ x˚

n.

Proof of Theorem 6.1. Let ι : SubDpRq Ñ K, η : N Ñ t0, 1u be arbitrary maps such that η
is non-zero. Fix m P N such that ηpmq “ 1. For each rHs P SubDpRq, fix a representative
H ď R and let BH :“ R{H, equipped with the natural action of R by addition. Let DH be
the disjoint union of ιprHsq copies of BH . If ι is the zero map then let Xm :“ Bt0u, and if
ι “ χR then let Xm :“ BR \Bt0u. Otherwise, let Xm :“ \HPSubDpRqDH . If n P N ´ tmu and
ηpnq “ 1, then let Xn :“ BR \Bt0u. If n P N and ηpnq “ 0, then let Xn :“ BR.

Let F be the resulting ore and let G be its extracted group, equipped with the metric d
defined above. Then pG, dq is the ℓ1 product ℓ1pT , idq. By Lemma 6.15, for each n P N , the
metric space pTn, dnq is the complete universal real tree with valence 2ℵ0 if ηpnq “ 1 and Tn
is isometric to R if ηpnq “ 0.

Fix a subgroup H P SubDpRq. Given pxnqnPN P
ś

Xn, it follows from Lemma 6.18 that, if
F “ F ppxnqnPN is the corresponding standard flat, then G ¨F P AH if and only if StabRpxmq P

rHs and xn P BR Ď Xn for all n ‰ m. Two standard flats F ppxnqnPNq, F ppynqnPNq whose
stabilisers act with dense orbits are in the same G-orbit if and only if xm, ym are in the same
R-orbit. Therefore there are precisely ιprHsq orbits of standard flats in AH . It follows from
Lemma 6.19 that |AH | “ ιprHsq.

6.2 Reducible actions

A natural question to ask when studying a group acting on a product space is whether it
is “reducible”, either in the sense that it splits non-trivially as a direct product or that a
subgroup large enough to encompass some of the geometry of the group splits non-trivially
as a direct product. Given a group G acting properly cocompactly on the product of two
locally finite simplicial trees, one says that G is reducible if a finite index subgroup of G splits
non-trivially as a direct product. Inspired by this, we consider the following notions. Fix a
group G and a space X such that X is isometric to the ℓ1-product of two unbounded real
trees T1, T2.

An action of a group G on a finite rank median space X is called essential (or sometimes
minimal, see [Fio24]) if there is no proper G-invariant convex subspace of X.

Definition 6.20. A free cobounded / essential action of G on X is coboundedly / essentially
reducible if there exists a subgroup H ď G which splits non-trivially as a direct product and
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such that the induced action of H on X is cobounded / essential.

Lemma 6.21. Let T1, T2 be R-trees which are not isometric to R and let X :“ T1ˆT2 be their
ℓ1 product. Let H “ H1 ˆ H2 ď IsompT1q ˆ IsompT2q be a subgroup such that H1, H2 ‰ tidu

and the action of H on X is free and essential. For each i P t1, 2u, let pi : H Ñ IsompTiq
be the canonical projection. Then, up to relabelling H1, H2, the following holds. Given any
point pz1, z2q P X, we have H1 “ StabHpT1 ˆ tz2uq, H2 “ StabHptz1u ˆ T2q and the induced
actions H1 ñ T1 ˆ tz2u, H2 ñ tz1u ˆ T2 are free and essential.

It follows that, if the action of H on X is in addition cobounded / cocompact / transitive,
then the H1 ñ T1 ˆ tz2u and the H2 ñ tz1u ˆ T2 are cobounded / cocompact / transitive for
each i P t1, 2u.

Proof. Since the action of H on T1 ˆT2 is essential, so are the actions p1, p2. Let us show that
there is a hyperbolic element in pipH1 YH2q for i “ 1, 2. Suppose to the contrary that every
element in pipH1 YH2q fixes a point in Ti. Let h1 P H1, h2 P H2 and x1 P Ti be a point fixed
by piph1q. Then piph1q fixes piph2qx1 and therefore fixes the segment rx1, piph2qx1s pointwise.
Since piph2q is elliptic, the midpoint x2 of the (possibly degenerate) segment rx1, piph2qx1s is
fixed by piph2q as well as piph1q. Thus piph1h2q fixes a point. But by [Fio24, Theorem C(1)]
there is a hyperbolic element in pipHq so this is a contradiction.

Now, up to relabelling H1, H2, we can assume that there exists an element h P H1 such
that p1phq is hyperbolic. Let ℓ Ď T1 be the axis of p1phq. Then, since H2 commutes with
h, p1pH2q stabilises ℓ. Moreover, if p1pH2q contains a hyperbolic element p1ph2q, then its
axis is also ℓ and, since H1 commutes with H2, this implies that p1pH1q also stabilises ℓ.
Since the action of p1pHq is essential, this implies that T1 “ ℓ. So we can assume that
p1pH2q contains no hyperbolic elements. Since p1pH2q stabilises ℓ, it follows that there is a
point x0 P ℓ which is fixed by every element of p1pH2q. Let h1 P H1, h2, h

1
2 P H2. Then

p1ph1
2qp1ph1h2qx0 “ p1ph1qx0 “ p1ph1h2qx0. Therefore p1pH2q fixes the p1pHq-orbit of x0

pointwise and therefore its convex hull, which is the entirety of T . Note that this also implies
that the action of p1pH1q on T1 is essential.

Since the action of H on T is free, the action of p2pH2q on T2 must be non-trivial. If p2pH1q

contains a hyperbolic element then the above argument implies that T2 is a line. Therefore
p2pH1q does not contain a hyperbolic element, so p2pH2q does and the above argument implies
that the action of p2pH2q on T2 is essential while the action of p2pH1q is trivial. The proposition
follows.

6.3 A free transitive and irreducible action

We can now prove the following:

Corollary 6.22. Let T1 “ T2 be the complete universal real tree with valence 2ℵ0. There exists
a group G ď IsompT1q ˆ IsompT2q which is essentially reducible but coboundedly irreducible.

Proof. Let X1 “ X2 “ R. Define an action of R2 on X1 and X2 as follows. If pr1, r2q P R2,
x1 P X1 and x2 P X2, then pr1, r2q ¨x1 “ r2 `x1 and pr1, r2q ¨x2 “ r1 `x2. Let pF , ˝,´1,ĺ, idq

be the ore constructed in Section 6.1 using these actions and let pG, ‹q be the group extracted
from F . Let d be the metric on G, so that pG, dq is the ℓ1 product T1 ˆ T2.

For each i P t1, 2u, let pi : IsompT1q ˆ IsompT2q Ñ IsompTiq be the canonical projection.
Suppose H ď G splits non-trivially as a direct product and the induced action H ñ T1 ˆ T2
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is essential. By Lemma 6.21, H “ H1 ˆH2, where H1 “ kerpp2q XH and H2 “ kerpp1q XH.
Fix i P t1, 2u and let f P Ti be a constant element with image xi P Xi and length ℓ ą 0. If
h P Hi, then σphq “ 0, so ℓ´pf´1 ‹ hq ě ℓ`pfq “ ℓ. Therefore dipf, hq “ ℓpf´1 ‹ hq ě ℓ. Thus
the action of Hi on Ti is not cobounded, which implies that the action of H on T1 ˆT2 is not
cobounded.

To see that G is essentially reducible in spite of being coboundedly irreducible, let H1 :“
p1pkerpp2qq and H2 :“ p2pkerpp1qq. Fix i P t1, 2u. Let f P T1 and let pypqpPP Ď Yi be the
sequence whose realisation is f. For each p P P , fix y1

p P Yi ´ typu such that, if yp P Xi

then y1
p P Xi, and if yp P X˚

i then y1
p P X˚

i . Let f1 be the realisation of py1
pqpPP . Then f1 is

admissible, σpf1´1
q “ ´σpf1q “ ´σpfq and f´1 ^ f1´1

“ id. Therefore f ĺ f ˝ f1´1
“ f ‹ f1´1 and

σpf ‹ f1´1
q “ 0. It follows that f ‹ f1´1

P Hi. Therefore the action Hi ñ Ti is essential, which
implies that H1 and H2 are non-trivial and the action of H1ˆH2 – xH1ˆtidu, tiduˆH2y ď G
on T1 ˆ T2 is essential.

6.4 Embedding BMW groups into products of R-trees

The groups constructed in Section 6.1 contain no isometrically embedded irreducible BMW
groups:

Proposition 6.23. Let pG, ‹q be the group from Definition 6.11. Let H be a BMW group
with BMW presentation xA Y X|Ry and suppose there exists a map ψ : H ãÑ G which is
both a homomorphism and an isometric embedding, where H is equipped with the word metric
corresponding to AYX. Then H is reducible.

Proof. Let dH denote the word metric on H with respect to AYX.
We first show that we can assume without loss of generality that N “ t1, 2u, G is isometric

to the ℓ1 product T1 ˆ T2 and ψpxAyq Ď T1 ˆ tidu and ψpxXyq Ď tidu ˆ T2. The fact that
ψ is an isometric embedding implies that, for all a P A Y A´1 and x P X Y X´1 we have
ℓpψpaqq “ ℓpψpxqq “ 1 and ℓpψpaxqq “ 2. Then

2 “ ℓpψpa´1xqq “ ℓpψpaqq ` ℓpψpxqq ´ 2ℓpψpaq ^ ψpxqq “ 2 ´ 2ℓpψpaq ^ ψpxqq,

so ψpaq ^ ψpxq “ id. Therefore ψpaq, ψpxq concatenate geodesically for all a P A Y A´1, x P

XYX´1. Moreover, if a P AYA´1, x P XYX´1 and a1 P AYA´1, x1 P XYX´1 are the unique
elements such that ax1 “ xa1, then ψpaq ˝ ψpx1q “ ψpaq ‹ ψpx1q “ ψpxq ‹ ψpa1q “ ψpxq ˝ ψpa1q.
Therefore ψpaq K ψpxq. Both xAy and xXy are Z-trees when equipped with dH , so ψpxAyq

and ψpxXyq are Z-trees. Therefore there exists n,m P N with n ‰ m such that ψpxAyq Ď Zn

and ψpxXyq Ď Zm. The set E of elements f P F such that fi “ id for all i P N such that
i R tn,mu is invariant under ˝ and ´1, contains id and, if f, g P F such that f P E and g ĺ f,
then g P E . Thus pE, ˝,´1, id,ĺq is an ore and its extracted group contains ψpHq.

Thus, we assume from now on that N “ t1, 2u, G is isometric to the ℓ1 product T1 ˆ T2
and ψpxAyq Ď T1 ˆ tidu and ψpxXyq Ď tidu ˆ T2.

For all g P xAy, f P xXy, let g1 P T1, f2 P T2 be such that ψpgq “ pg1, idq, ψpfq “ pid, f2q.
Define

VA :“ Yty P Y1 : a1ptq “ y for some a P AYA´1 and uncountably many t P r0, ℓpa1qsu

VX :“ Yty P Y2 : x2ptq “ y for some x P X YX´1 and uncountably many t P r0, ℓpx2qsu.
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Let n :“ maxtp2|A|q!, p2|X|q!u. If g P xAy and x P X Y X´1, then there exists f P xAy

such that gnx “ xf . Therefore

pgn1 , τpψpgnqq ¨ x2q “ pτpψpxqq ¨ f1, x2q

Thus τpψpgnqq ¨ x2 “ x2 for all g P xAy and x P X Y X´1. By a symmetric argument,
τpψpgnqq ¨ a1 “ a1 for all g P xXy and a P AYA´1.

Consider the actions αA : xAy Ñ SympY2q and αX : xXy Ñ SympY1q defined by αApgqpy2q “

τpψpgqq ¨ y2 and αXpfqpy1q “ τpψpfqq ¨ y1 for all g P xAy, f P xXy, y1 P Y1 and y2 P Y2. Let
WA Ď Y1 be the xXy-orbit of VA and let WX be the xAy-orbit of VX . Let βA be the restric-
tion of αA to WX and let βX be the restriction of αA to WX . Then, by the above argument,
every xAy-orbit in WX has cardinality dividing n and every xXy-orbit in WA has cardinality
dividing n. Since A and X are finite, there are finitely many subgroups of xAy with index
at most n and finitely many subgroups of xXy with index at most n. Let H1 ď xAy be the
intersection of all subgroups of xAy with index at most n and let H2 ď xXy be the intersection
of all subgroups of xXy with index at most n. Then H1 ď kerpβAq and H2 ď kerpβXq and H1

has finite index in xAy and H2 has finite index in xXy.
Let H 1 :“ xH1, H2y ď H. Then H 1 is a finite index subgroup of H. Let h P H1 and

f P xXy. Let us show by induction on the word length of f that βAphq ˝ f2 » f2. If
f P X Y X´1 then this follows from the fact that h P kerpβ2q, since f2ptq P WX for all
but countably many t P r0, ℓpf2qs. Let m ą 1 and suppose the word length of f is m. Then
f “ f 1x where f 1 P xXy has word lengthm´1 and x P XYX´1. By the induction hypothesis,
ψphf 1q “ ph1, τpψphqq ¨ f12q “ ph1, f

1
2q “ ψpf 1q ‹ p´τpψpf 1qq ¨ h1, idq. Moreover, for all w P WX ,

we have
τpp´τpψpf 1qq ¨ h1, idqq ¨ w “ τpψpf 1´1

hf 1qq ¨ w “ w.

Therefore:

ph1, τph1q ¨ f2q “ ψphfq

“ ψphf 1xq

“ ψpf 1q ‹ p´τpψpf 1qq ¨ h1, τpp´τpψpf 1qq ¨ h1, idqq ¨ x2q

“ ψpf 1q ‹ p´τpψpf 1qq ¨ h1, x2q

“ ph1, f2q,

so βAphq ˝ f2 » f2. A symmetric argument shows that βXphq ˝ g1 » g1 for all h P H2 and
g P xAy. It follows that H1 and H2 commute, so H – H1 ˆH2.

I do not know whether it is possible to isometrically embed an irreducible BMW group
into a group acting freely and transitively on a product of two (complete) real trees (see
Question 1.2). If one requests only that G acts on the product with dense orbits, the follow-
ing theorem shows that this can be done for BMW groups equipped with a positive BMW
presentation. Note that the group defined by Wise in [Wis07, Example 4.1] has a positive
BMW presentation and is irreducible by Corollary 6.8 in loc. sit.

Theorem 6.24. Let H be a BMW group with a positive BMW presentation xAYX | Ry and
let CaypH,A Y Xq be the corresponding Cayley graph. There exists a group G such that the
following hold:
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i. there is an injective homomorphism H ãÑ G;

ii. G acts freely with dense orbits on the ℓ1 product of two R-trees T1 ˆ T2;

iii. there is an isometric embedding ψ : CaypH,A Y Xq ãÑ T1 ˆ T2, which is equivariant
relative to H ãÑ G.

If H is irreducible, then for any subgroup L ď G which splits non-trivially as a direct product,
the induced action of L on T1 ˆ T2 does not have dense orbits.

Proof. Let R be closure of R under cyclic permutations. Let Γ be the Cayley complex of H
with respect to the presentation xA \ X | Ry and recall that Γ “ ΓA ˆ ΓX is the product
of the Cayley graph ΓA of xAy with the Cayley graph ΓX of xXy. Let πA : Γ Ñ ΓA and
πX : Γ Ñ ΓX be the projection maps and let idA, idX be the identity in xAy, xXy respectively.
The action of H on Γ does not permute the factors so there are projection actions H ñ ΓA

and H ñ ΓX defined (on the vertex sets) by

h ¨ gA “ πAphpgA, idXqq, h ¨ gX “ πXphpidA, gXqq @ h P H, gA P xAy, gX P xXy.

Definition 6.25. The induced action of xAy on ΓX permutes the set X and can be read off
the presentation of H: for all a P A and x P X, there exist a unique a1 P A and a unique
x1 P X such that axa1´1x1´1

P R, and we then have a ¨ x “ x1. Similarly the action of xXy on
ΓA permutes the set A and can be read off the presentation: given a P A, x P X there exist
unique a1 P A, x1 P X such that a1x1a´1x´1 P R and x ¨ a “ a1.

For each a P A and x P X let σa P SympXq and σx P SympAq denote the resulting
permutations.

Definition 6.26. • Let YA be a graph with vertex set A such that, for each a1, a2 P A
with a1 ‰ a2, there is a directed edge epa1, a2q from a1 to a2 of length 1. Similarly, let
YX be a graph with vertex set X such that, for each x1, x2 P X with x1 ‰ x2, there is
a directed edge epx1, x2q from x1 to x2 of length 1. Let d denote the resulting metrics
on YA and YX .

• For each n P N, let YApnq Ď YA, YXpnq Ď YX be the subsets consisting of points whose
distance to a vertex is a multiple of 1{n. For all distinct a1, a2 P A, x1, x2 P X let
enpa1, a2q :“ YApnq X epa1, a2q and enpx1, x2q :“ YXpnq X epx1, x2q.

Let n P N. We will construct a BMW group Gn with generating set YApnq \ YXpnq. We
first define actions of the free groups xYApnqy and xYXpnqy on YXpnq and YApnq respectively.

Recall that a directed cycle in a directed graph is a cycle with edges pe0, . . . , ek´1q such
that, for each i P Z{kZ, the edge ei is directed from ei´1 X ei to ei X ei`1. Observe that,
for any sequence of vertices C “ pv0, . . . , vk´1q in YA (resp. in YX) with k ě 2, the cycle
pepv0, v1q, epv1, v2q, . . . , epvk´1, vkqq is the unique directed cycle in YA (resp. YX) with vertices
C. In both YApnq and YXpnq, define a sequence Cpnq as follows. For each i P t1, . . . , k ´ 1u

and j P t0, . . . , n ´ 1u, let yi,j P epvi, vi`1q be the point such that dpvi, yi,jq “ j{n. Let
Cpnq :“ pyi,j : i P t0, . . . , k ´ 1u, j P t0, . . . , n ´ 1uq, ordered lexicographically. Less formally,
Cpnq is the sequence of points in YApnq (resp. YXpnq) that one encounters if one starts at v0
and follows the directed cycle in YA with vertices C.

Given yA P YApnq, there is a unique a P A such that yA P epb, aq ´ tbu for some b P A.
Define φnpyAq P SympYXpnqq as follows. Let C1 . . . Ck be the cyclic decomposition of σa;
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yX

φnpyXq´1pyAq

φnpyAq´1pyXq

yA

id

Figure 2: The relation rnpyA, yXq in Γn, where yA P YApnq and yX P YXpnq.

so, for each i, Ci “ px0, . . . , xmq for some m ě 0 and x0, . . . , xm´1 P X and σapxjq “ xj`1

for each j P Z{pm ` 1qZ. Let φnpyAq be the symmetry of YApnq with cyclic decomposition
C1pnq . . . Ckpnq. This defines a homomorphism φn : xYApnqy Ñ SympYXpnqq. Note that, if
YXpnq is equipped with the metric induced by YX , the action φn is not by isometries.

Similarly, if yX P YXpnq, let x P X be the unique vertex of YX such that yX P epz, xq ´

tzu for some z P X and let C1 . . . Ck be the cyclic decomposition of σx. Define φnpyXq P

SympYApnqq to be the symmetry of YApnq with cyclic decomposition C1pnq . . . Ckpnq. This
determines a homomorphism φn : xYXpnqy Ñ SympYApnqq.

Definition 6.27. For each yA P YApnq, yX P YXpnq, let

rnpyA, yXq :“ yA φnpyAq´1pyXq pφnpyXq´1pyAqq´1 y´1
X P xYApnq Y YXpnqy

and let Rpnq :“ trnpyA, yXq : yA P YApnq, yX P YXpnqu. Let Gn be the group with presen-
tation xYApnq Y YXpnq | Rpnqy and let Γn be the Cayley complex of Gn with respect to this
presentation. The image of a relation rpyA, yXq in Γn is illustrated in Figure 2.

Claim 1. For each n P N, xYApnq Y YXpnq | Rpnqy is a BMW presentation.

Proof. Let zA P YApnq Y YApnq´1, zX P YXpnq Y YXpnq´1 and let yA P YApnq and yX P YXpnq

be such that either zA “ yA or zA “ y´1
A , and zX “ yX or zX “ y´1

X . Then rnpyA, yXq is the
unique element of Rpnq of the form zAzXz

1
Az

1
X or z1

Az
1
XzAzX or z´1

A z1
Xz

1
Az

´1
X or z1

Az
´1
X zAz

1
X

for some z1
A P YA Y Y ´1

A and z1
X P YX Y Y ´1

X . ■

Let dn be the path metric on the 1-skeleton Γ
p1q
n , where each edge is assigned a length of

1{n.
Equip N with the partial order n ĺ m if and only if n divides m, and note that pN,ĺq is

a net. If m “ kn, where k,m, n P N, define ψn,m : Gn Ñ Gm as follows. If y P YApnq YYXpnq,
set ψn,mpyq :“ yk. If yA P YApnq, yX P YXpnq, then

ψn,mprnpyA, yXqq “ ykA φnpyAq´1pyXqk φnpyXq´1pyAq´k y´k
X

“ ykA φmpyAq´kpyXqk φmpyXq´kpyAq´k y´k
X .

Let a P A and x P X be such that yA P epa1, aq ´ ta1u and yX P epx1, xq ´ tx1u for some
a1 P A, x1 P X. Note that, since yA P YApnq, for any i P t0, . . . , k ´ 1u and for all zX P YXpmq

we have φmpzXqipyAq P epa1, aq ´ ta1u for some a1 P A. Therefore φjpφmpzXqipyAqq “ φjpyAq

for any j P N. Similarly, φjpφmpzAqipyXqq “ φjpyxq for any zA P YApmq, i P t0, . . . , k ´ 1u
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yA,k´1

yA,k´1

yA,k´1

yA,k

yA,k

yA,k

yX yX yX

yX,1 yX,1 yX,1

yX,2 yX,2 yX,2

yX,k´1 yX,k´1 yX,k´1

yX,k yX,k yX,k

Figure 3: The ψn,m-image of rnpyA, yXq, where yA P YApnq and yX P YXpnq. For each
i P t1, . . . , ku, we denote yA,i :“ φmpyXq´ipyAq and yX,i :“ φmpyAq´ipyXq.

and j P N. It follows that ψn,mprpyA, yXqq “ id (see Figure 3). Therefore ψn,m extends a
homomorphism ψn,m : Gn Ñ Gm.

By construction, ψn,m is an isometric embedding when restricted to balls of radius 1 in
Gn. It extends naturally to a local isometry ψn,m : Γn Ñ Γm, where the image ψn,mpΓnq is

the convex hull of ψn,mpGnq. Since both Γn and ψn,mpΓnq are simply connected, this implies
that ψn,m is an isometric embedding.

Definition 6.28. Let G be the direct union of the system xGn, ψn,my.
Since each ψn,m is an isometric embedding, there is a metric d : G2 Ñ G such that the

restriction of d to G2
n is dn for any n P N. Let X be the completion of pG, dq.

For each n P N, let ψn : xYApnq Y YXpnqy Ñ G be the canonical embedding. It is a
homomorphism and an isometric embedding.

Claim 2. X is the ℓ1 product of two R trees TA ˆ TX .

Proof. Let WA :“ YnPNYApnq and WX :“ YnPNYXpnq. Let SA :“ xWAy ď G and SX :“
xWXy ď G. We will show that SA and SX are Q-trees.

Let f, g, h P SA. Then there exists n P N such that f, g, h P xYApnqy. Note that dpf, gq “

dnpf, gq P Z{n ď Q so SA is indeed a Q-metric space. Since pxYApnqy, dnq is a Z{n-tree, there
exists a median p P xYApnqy for dn and therefore for d. For allm ľ n, the restriction of ψn,m to
xYApnqy is an isometric embedding into pxYApmq, dmy. It follows that p is the unique median
of tf, g, hu in SA, so SA is median, and that SA has rank 1. Let n P N and let yA P YApnq.
For each p{q P Q X p0, 1{ns such that p and q are coprime, γptq :“ ψqpypAq. Let γp0q :“ id.
Then γ is a Q-geodesic in G from id to ψnpyAq. It follows that G is a geodesic Q-metric space.
By Lemma 2.11, this implies that SA is Q-tree. A symmetric argument shows that SX is a
Q-tree.

50



For each n P N, Proposition 2.14 implies that pxYApnq Y YXpnqy, dnq is, as a Z{n-metric
space, the ℓ1 product of xYApnqy and xYXpnqy. It follows that G is the ℓ1-product of SA and
SX as a Q-metric space. Let TA be the completion of SA and let TX be the completion of
SX . Then X is the ℓ1 product TA ˆ TX . ■

Since each element of G has positive translation length in G, the action of G on its
completion X is free. This proves Item ii of the theorem. The injection ψ1 verifies Item i, and
naturally extends to an H-equivariant isometric embedding ψ : CaypH,A Y Xq ãÑ TA ˆ TX ,
verifying Item iii. The last part of the theorem is proved in the following claim:

Claim 3. If G contains a subgroup K ď G which splits non-trivially as a direct product such
that the induced action K ñ TA ˆ TX has dense orbits, then H is reducible.

Proof. Note that G ď IsompTAq ˆ IsompTXq. Let pA : G Ñ IsompTAq, pX : G Ñ IsompTXq be
the canonical projections. Also recall that pG, dq is isomorphic to the ℓ1 product SA ˆ SX .
Let ρA : G Ñ SA, ρX : G Ñ SX be the canonical projections.

By Lemma 6.21, K – KA ˆ KX , where KA ď kerppXq ď SA,KX ď kerppAq ď SX , and
KA is dense in TA, and KX is dense in TX .

Let ΓA,ΓX be the Cayley graphs of the free groups xAy, xXy with respect to the generating
sets A,X. Let qA : H Ñ IsompΓAq and qX : H Ñ IsompΓXq be the canonical projections. We
will show that qApHq and qXpHq are discrete with respect to the compact open topology on
IsompΓAq and IsompΓXq. By [BM00, Proposition 1.2], this implies that H is reducible.

Let h P H be such that qXphq fixes the ball of radius 1 in ΓX around idX pointwise. In
particular, qXphq fixes idX , so h P xAy. Moreover h ¨ x “ x for all x P X. Then, for all
n P N, the element φnpψ1,nphqq P SympYXpnqq is the identity map. Let f :“ ψ1phq. Then
pXpfqpgq “ g for all g P SX with dpg, idXq ď 1.

Let n P N and suppose that pXpfqpgq “ g for all g P SX such that dpg, idXq ă n. Let
g P SX be such that dpg, idXq ă n ` 1. There exists kX P KX such that dpkX , idXq ă n and
dpkX , gXq ă 1. Then pXpfqpkXq “ kX , which, since pApkXqpfq “ f , implies that f and kX
commute. Let g1 :“ k´1

X g, so dpidx, gq ă 1. Then

pXpfqpgq “ ρXpfkXg
1q “ ρXpkXfg

1q “ kXpXpfqpg1q “ kXg
1 “ g.

It follows by induction on n that pXpfq is the trivial map on SX . Since ψ isH-equivariant, this
implies in particular that qXphq is the identity map on ΓX . Therefore the identity is isolated
in qXpHq, so qXpHq is discrete. A symmetric argument shows that qApHq is discrete. ■
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